Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of Supercapacitors: A Review

[1]  Seung-Kyu Hwang,et al.  Realizing superior redox kinetics of metal-metal carbides/carbon coordination supported heterointerface for stable solid-state hybrid supercapacitor , 2022, Chemical Engineering Journal.

[2]  A. Olabi,et al.  Refurbished Carbon Materials from Waste Supercapacitors as Industrial-Grade Electrodes: Empowering Electronic Waste , 2022, SSRN Electronic Journal.

[3]  A. Devi,et al.  Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies , 2022, Renewable and Sustainable Energy Reviews.

[4]  A. Olabi,et al.  All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. , 2022, Small.

[5]  Xiaogang Zhang,et al.  Pore-Size-Dependent Capacitance and Charging Dynamics of Nanoporous Carbons in Aqueous Electrolytes , 2022, The Journal of Physical Chemistry C.

[6]  Xiaoyong Fan,et al.  High Energy Density in Combination with High Cycling Stability in Hybrid Supercapacitors. , 2022, ACS applied materials & interfaces.

[7]  Rafael Vicentini,et al.  Niobium pentoxide nanoparticles decorated graphene as electrode material in aqueous-based supercapacitors: Accurate determination of the working voltage window and the analysis of the distributed capacitance in the time domain , 2021, Journal of Energy Storage.

[8]  W. Han,et al.  Enhancing the Cycling Stability of Transition-Metal-Oxide-Based Electrochemical Electrode via Pourbaix Diagram Engineering , 2021 .

[9]  E. Platacis,et al.  Cadmium Recovery from Spent Ni-Cd Batteries: A Brief Review , 2021, Metals.

[10]  A. Jagadale,et al.  Review—Mitigating Supercapacitor Self-Discharge Through Strategic Materials Modification , 2021, Journal of The Electrochemical Society.

[11]  M. S. Michael,et al.  Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors , 2021 .

[12]  Wei Sun,et al.  Rationally tuning ratio of micro- to meso-pores of biomass-derived ultrathin carbon sheets toward supercapacitors with high energy and high power density. , 2021, Journal of colloid and interface science.

[13]  Syed Shaheen Shah,et al.  Development of a Novel Bio‐based Redox Electrolyte using Pivalic Acid and Ascorbic Acid for the Activated Carbon‐based Supercapacitor Fabrication , 2021, Asian Journal of Organic Chemistry.

[14]  Chang Yu,et al.  Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies , 2021, Journal of Energy Chemistry.

[15]  Meifang Zhu,et al.  Hollow multi-nanochannel carbon nanofiber/MoS2 nanoflower composites as binder-free lithium-ion battery anodes with high capacity and ultralong-cycle life at large current density , 2021 .

[16]  Yijun Zhong,et al.  New types of hybrid electrolytes for supercapacitors , 2021 .

[17]  Jian-qiu Deng,et al.  Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries. , 2021, Small.

[18]  Benjamin Sovacool,et al.  Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions , 2021 .

[19]  H. Alshareef,et al.  Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems , 2021, Advanced Energy Materials.

[20]  Muhammad-Sadeeq Balogun,et al.  All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-Ion storage , 2021 .

[21]  D. Dubal,et al.  Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor , 2021 .

[22]  Meysam Sharifzadeh Mirshekarloo,et al.  Liquid‐Crystal Mediated Assembly of Iodinated Graphene Oxide for Ultra‐Dense Supercapacitors as Safe Power Source for Internet of Things Data Transmission , 2021 .

[23]  Ming Li,et al.  Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. , 2021, ACS applied materials & interfaces.

[24]  S. Chan,et al.  Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review , 2021 .

[25]  Sang-Chai Kim,et al.  Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress , 2021 .

[26]  P. Enoksson,et al.  Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation , 2021, Journal of Power Sources.

[27]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[28]  B. Saikia,et al.  A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials , 2020 .

[29]  Y. Gogotsi,et al.  Low-Temperature pseudocapacitive energy storage in Ti3C2T MXene , 2020 .

[30]  Jatin Nathwani,et al.  Thermo-environmental analysis of a novel cogeneration system based on solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) coupled with turbocharger , 2020 .

[31]  F. Gao,et al.  Robust High‐Temperature Supercapacitors Based on SiC Nanowires , 2020, Advanced Functional Materials.

[32]  A. Burke,et al.  Review on supercapacitors: Technologies and performance evaluation , 2020 .

[33]  Mojtaba Mirzaeian,et al.  Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems , 2020, Energies.

[34]  Zongbin Zhao,et al.  3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density , 2020, Nano-Micro Letters.

[35]  Mojtaba Mirzaeian,et al.  Pseudocapacitive Effect of Carbons Doped with Different Functional Groups as Electrode Materials for Electrochemical Capacitors , 2020, Energies.

[36]  Gaigai Duan,et al.  Recent progress in carbon-based materials for supercapacitor electrodes: a review , 2020, Journal of Materials Science.

[37]  V. Kumaravel,et al.  Electrode Materials for Supercapacitors: A Review of Recent Advances , 2020, Catalysts.

[38]  D. Dubal,et al.  True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. , 2020, Small.

[39]  D. Stolten,et al.  45% Cell Efficiency in DMFCs via Process Engineering , 2020, Fuel Cells.

[40]  S. Fankhauser,et al.  Reduction in greenhouse gas emissions from national climate legislation , 2020, Nature Climate Change.

[41]  Darren H. S. Tan,et al.  Sodium‐Ion Batteries Paving the Way for Grid Energy Storage , 2020, Advanced Energy Materials.

[42]  Saied Saeed Hosseiny Davarani,et al.  Rational Construction of Core‐Shell Ni−Mn−Co−S@Co(OH) 2 Nanoarrays toward High‐Performance Hybrid Supercapacitors , 2020 .

[43]  Yuehong Lu,et al.  A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources , 2020 .

[44]  Zhengbiao Ouyang,et al.  Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications , 2020, Progress in Solid State Chemistry.

[45]  D. Dubal,et al.  Graphene and molybdenum disulphide hybrids for energy applications: an update , 2020, Materials Today Advances.

[46]  Huakun Liu,et al.  Transition metal based battery-type electrodes in hybrid supercapacitors: A review , 2020 .

[47]  K. Guo,et al.  Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids , 2020, Nanomaterials.

[48]  Hansung Kim,et al.  Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors , 2020 .

[49]  Parveen Kumar,et al.  Porous Graphitic Carbon Fibers for Fast‐Charging Supercapacitor Applications , 2020 .

[50]  J. Xue,et al.  Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors , 2020, Nano-micro letters.

[51]  Teuku Meurah Indra Mahlia,et al.  Grid-connected renewable energy sources: Review of the recent integration requirements and control methods , 2020 .

[52]  Baohua Li,et al.  A Long Cycle‐Life High‐Voltage Spinel Lithium‐Ion Battery Electrode Achieved by Site‐Selective Doping , 2020, Angewandte Chemie.

[53]  S. Jun,et al.  Self-assembled bimetallic cobalt–manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors , 2020 .

[54]  Yusuf Bicer,et al.  Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation , 2020 .

[55]  Emilio Pérez,et al.  Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage , 2020 .

[56]  Ananthakumar Ramadoss,et al.  Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries , 2020, Nano-micro letters.

[57]  S. Jun,et al.  Review on recent progress in the development of tungsten oxide-based electrodes for electrochemical energy storage. , 2020, ChemSusChem.

[58]  Cheng Zhong,et al.  Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage , 2020, Transactions of Tianjin University.

[59]  Yali Li,et al.  Flexible and adaptable fuel cell pack with high energy density realized by a bifunctional catalyst. , 2020, ACS applied materials & interfaces.

[60]  Peixin Zhang,et al.  The synthesis and performance analysis of various biomass‐based carbon materials for electric double‐layer capacitors: A review , 2019, International Journal of Energy Research.

[61]  Jaephil Cho,et al.  Strategic Pore Architecture for Accommodating Volume Change from High Si Content in Lithium‐Ion Battery Anodes , 2019, Advanced Energy Materials.

[62]  Qing He,et al.  A review of thermal energy storage in compressed air energy storage system , 2019 .

[63]  P. Haidl,et al.  Lifetime Analysis of Energy Storage Systems for Sustainable Transportation , 2019 .

[64]  B. Liu,et al.  An Aqueous Zn‐Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles , 2019, Advanced Energy Materials.

[65]  Amy L. Stoltzfus,et al.  Knittable and Washable Multifunctional MXene‐Coated Cellulose Yarns , 2019, Advanced Functional Materials.

[66]  T. Brousse,et al.  High temperature solid-state supercapacitor designed with ionogel electrolyte , 2019, Energy Storage Materials.

[67]  Tae Hoon Lee,et al.  Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. , 2019, ACS nano.

[68]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[69]  Julius Partridge,et al.  The Role of Supercapacitors in Regenerative Braking Systems , 2019, Energies.

[70]  C. Ugwuoke,et al.  Recent trends in non-faradaic supercapacitor electrode materials , 2019, Metallurgical and Materials Engineering.

[71]  T. Brousse,et al.  Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors , 2019, Energy Storage Materials.

[72]  S. Jun,et al.  Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor , 2019, Electrochimica Acta.

[73]  M. García-Pérez,et al.  Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions , 2019, Energy & Fuels.

[74]  Shizhen Li,et al.  Biomass‐Derived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[75]  Jagannathan Thirumalai,et al.  A review on recent advances in hybrid supercapacitors: Design, fabrication and applications , 2019, Renewable and Sustainable Energy Reviews.

[76]  Wei Zhai,et al.  Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life , 2019, Journal of Power Sources.

[77]  Peng Yu,et al.  Flexible Zn-Ion Batteries: Recent Progresses and Challenges. , 2019, Small.

[78]  R. Gupta,et al.  Flexible Supercapacitors: A Materials Perspective , 2019, Front. Mater..

[79]  Hongxia Wang,et al.  Boosting the cycling stability of transition metal compounds-based supercapacitors , 2019, Energy Storage Materials.

[80]  Yajvender Pal Verma,et al.  Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems , 2018, Energy Conversion and Management.

[81]  J. Stock,et al.  The Cost of Reducing Greenhouse Gas Emissions , 2018, Journal of Economic Perspectives.

[82]  W. Qian,et al.  Cross‐Coupled Macro‐Mesoporous Carbon Network toward Record High Energy‐Power Density Supercapacitor at 4 V , 2018, Advanced Functional Materials.

[83]  Ki-Hyun Kim,et al.  Recent advancements in supercapacitor technology , 2018, Nano Energy.

[84]  V. Sahajwalla,et al.  The present and future of e-waste plastics recycling , 2018, Current Opinion in Green and Sustainable Chemistry.

[85]  Zhiyu Wang,et al.  High-Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. , 2018, Small.

[86]  J. Yu,et al.  Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: A sunlight-driven rechargeable energy storage system to portable electronics , 2018, Nano Energy.

[87]  E. Frąckowiak,et al.  Sustainable materials for electrochemical capacitors , 2018 .

[88]  Siliang Wang,et al.  Highly Self-Healable 3D Microsupercapacitor with MXene-Graphene Composite Aerogel. , 2018, ACS nano.

[89]  C. Zhi,et al.  Tunable Free‐Standing Ultrathin Porous Nickel Film for High Performance Flexible Nickel–Metal Hydride Batteries , 2018 .

[90]  E. Morallón,et al.  Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors , 2018 .

[91]  Jiří Vondrák,et al.  Supercapacitors: Properties and applications , 2018, Journal of Energy Storage.

[92]  Jae Su Yu,et al.  Utilizing Waste Cable Wires for High‐Performance Fiber‐Based Hybrid Supercapacitors: An Effective Approach to Electronic‐Waste Management , 2018 .

[93]  Sang-Hoon Park,et al.  Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks , 2018, Advanced Functional Materials.

[94]  Hao Jiang,et al.  Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design , 2017, Advanced science.

[95]  Mojtaba Mirzaeian,et al.  Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applications , 2017 .

[96]  Mojtaba Mirzaeian,et al.  Electrode and electrolyte materials for electrochemical capacitors , 2017 .

[97]  Sumanta Kumar Karan,et al.  Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator , 2017 .

[98]  C. Lokhande,et al.  Facile synthesis of hierarchical mesoporous weirds-like morphological MnO2 thin films on carbon cloth for high performance supercapacitor application. , 2017, Journal of colloid and interface science.

[99]  E. Lust,et al.  Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors , 2017 .

[100]  Ian W Hunter,et al.  Vertically Aligned Niobium Nanowire Arrays for Fast‐Charging Micro‐Supercapacitors , 2017, Advanced materials.

[101]  Xuli Chen,et al.  Carbon-based supercapacitors for efficient energy storage , 2017 .

[102]  M. Jaroniec,et al.  From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors , 2017 .

[103]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[104]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[105]  C. Lokhande,et al.  Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application , 2017 .

[106]  Quoc Dat Nguyen,et al.  Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors , 2016 .

[107]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[108]  C. Lokhande,et al.  Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte. , 2016, Journal of colloid and interface science.

[109]  M. Shaneeth,et al.  PEM fuel cell cathode catalyst layer durability: An electrochemical spectroscopic investigation , 2016 .

[110]  Shaohua Wu,et al.  High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode , 2016 .

[111]  Raghu Raman Rajagopal,et al.  Activated carbon derived from non-metallic printed circuit board waste for supercapacitor application , 2016 .

[112]  Choongho Yu,et al.  Thermally Chargeable Solid‐State Supercapacitor , 2016 .

[113]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[114]  Xiaodong Chen,et al.  Self‐Protection of Electrochemical Storage Devices via a Thermal Reversible Sol–Gel Transition , 2015, Advanced materials.

[115]  P. Braun,et al.  Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. , 2015, ACS nano.

[116]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[117]  Seungmin Hyun,et al.  Polypyrrole-MnO₂-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. , 2015, ACS applied materials & interfaces.

[118]  Ning Pan,et al.  Supercapacitors Performance Evaluation , 2015 .

[119]  Sanna Syri,et al.  Electrical energy storage systems: A comparative life cycle cost analysis , 2015 .

[120]  Martin Müller,et al.  Direct methanol fuel cell systems for backup power – Influence of the standby procedure on the lifetime , 2014 .

[121]  Teng Zhai,et al.  Solid‐State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability , 2014, Advanced materials.

[122]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[123]  Changsoon Choi,et al.  Flexible Supercapacitor Made of Carbon Nanotube Yarn with Internal Pores , 2014, Advanced materials.

[124]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[125]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[126]  P. Ajayan,et al.  Supercapacitor Operating At 200 Degrees Celsius , 2013, Scientific Reports.

[127]  David G. Evans,et al.  Reversible thermally-responsive electrochemical energy storage based on smart LDH@P(NIPAM-co-SPMA) films. , 2013, Chemical communications.

[128]  Atsushi Iizuka,et al.  Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review , 2013 .

[129]  Pierre-Louis Taberna,et al.  Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C , 2013 .

[130]  P. Denholm,et al.  Value of Energy Storage for Grid Applications , 2013 .

[131]  Satishchandra Ogale,et al.  From dead leaves to high energy density supercapacitors , 2013 .

[132]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[133]  Pierre-Louis Taberna,et al.  Characterization of commercial supercapacitors for low temperature applications , 2012 .

[134]  Pulickel M. Ajayan,et al.  Transparent, flexible supercapacitors from nano-engineered carbon films , 2012, Scientific Reports.

[135]  Jin Yi,et al.  Recent Progress in Aqueous Lithium‐Ion Batteries , 2012 .

[136]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[137]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[138]  John R Miller,et al.  Valuing Reversible Energy Storage , 2012, Science.

[139]  Ki Chul Park,et al.  Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles. , 2012, ChemSusChem.

[140]  Arunabha Ghosh,et al.  Carbon-based electrochemical capacitors. , 2012, ChemSusChem.

[141]  D. Lemordant,et al.  Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances , 2012 .

[142]  Aiping Yu,et al.  Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene , 2011 .

[143]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[144]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[145]  Li Zhang,et al.  Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability , 2011 .

[146]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[147]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[148]  Dongsheng Ma,et al.  The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes , 2011 .

[149]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[150]  Dominic A. Notter,et al.  Contribution of Li-ion batteries to the environmental impact of electric vehicles. , 2010, Environmental science & technology.

[151]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[152]  Bingqing Wei,et al.  Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric , 2009 .

[153]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[154]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[155]  M. Smart,et al.  Double-Layer Capacitor Electrolytes Using 1,3-Dioxolane for Low Temperature Operation , 2008 .

[156]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[157]  K. B. Oldham A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface , 2008 .

[158]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[159]  S. Sofie,et al.  A symmetrical, planar SOFC design for NASA's high specific power density requirements , 2007 .

[160]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[161]  S. Nakazawa,et al.  An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore‐Filling Electrolyte Membrane for Direct Methanol Fuel Cells , 2007 .

[162]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[163]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[164]  Jeffry W. Stevenson,et al.  Long-Term Thermal Cycling of Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells , 2005 .

[165]  Ji Liang,et al.  Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors , 2004 .

[166]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[167]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[168]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[169]  A. Olabi,et al.  Nitridation-induced in situ coupling of Ni-Co4N particles in nitrogen-doped carbon nanosheets for hybrid supercapacitors , 2022 .

[170]  C. Lokhande,et al.  Microsheets like nickel cobalt phosphate thin films as cathode for hybrid asymmetric solid-state supercapacitor: Influence of nickel and cobalt ratio variation , 2022, Chemical Engineering Journal.

[171]  Franciele Wolfart,et al.  Conducting polymers and composites nanowires for energy devices: A brief review , 2020 .

[172]  Xuning Feng,et al.  Thermal runaway mechanism of lithium ion battery for electric vehicles: A review , 2018 .

[173]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[174]  Haoran Zhao,et al.  Review of energy storage system for wind power integration support , 2015 .

[175]  T. Kousksou,et al.  Energy storage: Applications and challenges , 2014 .

[176]  J. Garche,et al.  Electrochemical Energy Storage for Renewable Sources and Grid Balancing , 2014 .

[177]  J. Graydon,et al.  Charge redistribution and ionic mobility in the micropores of supercapacitors , 2014 .

[178]  Hassan Fathabadi,et al.  A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles , 2014 .

[179]  O. Nayfeh,et al.  Flexible supercapacitor sheets based on hybrid nanocomposite materials , 2013 .

[180]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .