‘Zinc fingers’: a novel protein motif for nucleic acid recognition

[1]  D. Melton,et al.  Xfin: an embryonic gene encoding a multifingered protein in Xenopus. , 1987, The EMBO journal.

[2]  Kim Nasmyth,et al.  Cell cycle regulation of SW15 is required for mother-cell-specific HO transcription in yeast , 1987, Cell.

[3]  M. Vessal,et al.  Effect of zinc and/or pyridoxine deficiency upon oestrogen retention and oestrogen receptor distribution in the rat uterus. , 1987, Journal of steroid biochemistry.

[4]  M. Johnston Genetic evidence that zinc is an essential co-factor in the DNA binding domain of GAL4 protein , 1987, Nature.

[5]  A. Eisen,et al.  Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function , 1987, Nature.

[6]  S. Harrison,et al.  Structure of the represser–operator complex of bacteriophage 434 , 1987, Nature.

[7]  P. Chambon,et al.  Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor , 1987, Nature.

[8]  A. Klug,et al.  Mapping of the sites of protection on a 5 S RNA gene by the Xenopus transcription factor IIIA. A model for the interaction. , 1986, Journal of molecular biology.

[9]  R. Evans,et al.  Functional domains of the human glucocorticoid receptor , 1986, Cell.

[10]  A. Ullrich,et al.  The complete primary structure of protein kinase C--the major phorbol ester receptor. , 1986, Science.

[11]  A. Klug,et al.  An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA , 1986, Cell.

[12]  A. Vincent TFIIIA and homologous genes. The 'finger' proteins. , 1986, Nucleic acids research.

[13]  J. Berg,et al.  Potential metal-binding domains in nucleic acid binding proteins. , 1986, Science.

[14]  L. J. Korn,et al.  Structure of tbe gene for Xenopus transcription factor TMIIIA , 1986 .

[15]  M. Ptashne,et al.  Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. , 1986, Science.

[16]  D. Rhodes Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. , 1985, The EMBO journal.

[17]  P Argos,et al.  The primary structure of transcription factor TFIIIA has 12 consecutive repeats , 1985, FEBS letters.

[18]  A Klug,et al.  Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. , 1985, The EMBO journal.

[19]  W. Gehring,et al.  Homeotic genes, the homeo box, and the genetic control of development. , 1985, Cold Spring Harbor symposia on quantitative biology.

[20]  R. Roeder,et al.  Xenopus 5S gene transcription factor, TFIIIA: Characterization of a cDNA clone and measurement of RNA levels throughout development , 1984, Cell.

[21]  I. Jackson,et al.  Domains of the positive transcription factor specific for the Xenopus 5S RNA gene , 1984, Cell.

[22]  Donald D. Brown The role of stable complexes that repress and activate eucaryotic genes , 1984, Cell.

[23]  R. Sauer,et al.  Protein-DNA recognition. , 1984, Annual review of biochemistry.

[24]  R. J. Williams Zinc: what is its role in biology? , 1984, Endeavour.

[25]  D. Hazuda,et al.  Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. , 1983, The Journal of biological chemistry.

[26]  H. Eklund,et al.  Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. , 1976, Journal of molecular biology.

[27]  D. Toft,et al.  Inhibition of the binding of progesterone receptor to nuclei: effects of o-phenanthroline and rifamycin AF/013. , 1975, Biochemical and biophysical research communications.

[28]  G. Shyamala Is the estrogen receptor of mammary glands a metallo-protein? , 1975, Biochemical and biophysical research communications.