Level structure in the transitional nucleus195Au

Excited states in ${}^{195}$Au have been studied experimentally via the ${}^{192}$Os(${}^{7}$Li, 4$n$) reaction at a beam energy of 44 MeV. Based on the $\ensuremath{\gamma}$-$\ensuremath{\gamma}$-$t$ coincidence measurement, a level scheme consisting of 15 new transitions and 10 new levels is established for ${}^{195}$Au. The triaxial shape-polarizing effect of the high-$j$ ${h}_{11/2}$ proton hole was studied by total Routhian surface calculations. By comparing with the level structures in the odd-$A$ Au isotopes and the even-even core Hg nuclei, configurations are proposed to the rotational bands and three-quasiparticle states observed in ${}^{195}$Au.

[1]  S. Gupta,et al.  High spin spectroscopy of 201 Tl , 2013 .

[2]  G. Prajapati,et al.  Band structures and intruder πi 13/2 state in 197 Tl , 2013, 1307.2056.

[3]  I. Ragnarsson,et al.  Close near-degeneracy in a pair of four-quasiparticle bands in Tl-194 , 2013 .

[4]  B. S. Naidu,et al.  High spin band structures in doubly odd 194 Tl , 2012, 1201.6596.

[5]  J. Wood,et al.  Shape coexistence in atomic nuclei , 2011 .

[6]  D. Filipescu,et al.  In-beam measurements of sub-nanosecond nuclear lifetimes with a mixed array of HPGe and LaBr3:Ce detectors , 2010 .

[7]  I. Ragnarsson,et al.  Candidate chiral bands in 198Tl , 2010 .

[8]  I. Ragnarsson,et al.  Triaxial shape with rotation around the longest principal axis in Gd-142 , 2008 .

[9]  I. Ragnarsson,et al.  Possible chirality in the doubly-odd Tl-198 nucleus: Residual interaction at play , 2008 .

[10]  R. Kumar,et al.  Experimental study of shape coexistence in {sup 189}Tl , 2007 .

[11]  R. Kumar,et al.  Shape coexistence and lifetime measurement in {sup 187}Tl nucleus , 2005 .

[12]  K. Pomorski,et al.  Nuclear liquid drop model and surface curvature effects , 2003 .

[13]  M. Taylor,et al.  Shape coexistence in $^{183}$Tl , 2001 .

[14]  Spectroscopy in the Second Minimum: Isotopic Limits, Lifetimes, and Magnetic Properties of Superdeformed Tl Nuclei , 2000, Journal of research of the National Institute of Standards and Technology.

[15]  M. Kárný,et al.  New isotopes and isomers produced by the fragmentation of 238U at 1000 MeV/nucleon , 1998 .

[16]  M. Scadron Scalar $\sigma$ meson via chiral and crossing dynamics , 1997, hep-ph/9710317.

[17]  L. Riedinger,et al.  Superdeformed shapes and configurations in thallium nuclei , 1997 .

[18]  Ahmad,et al.  Alignment additivity in the two-quasiparticle superdeformed bands of 192Tl. , 1996, Physical review. C, Nuclear physics.

[19]  D. C. Radford,et al.  ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets , 1995 .

[20]  W. Nazarewicz,et al.  Shape coexistence in 185Tl and 187Tl — investigation of the deformed minima , 1995 .

[21]  J. M. Lewis,et al.  Competing shapes in light Tl nuclei , 1995 .

[22]  W. H. Kelly,et al.  M1 transitions between superdeformed states in 195Tl: the fingerprint of the i132 proton intruder orbital , 1994 .

[23]  P. J. Daly,et al.  Detailed band structures in 189Hg and 190Hg , 1994 .

[24]  W. Nazarewicz,et al.  Deformed i 13 2 bands and prolate-oblate shape coexistence in 185Tl and 187Tl , 1994 .

[25]  J. M. Lewis,et al.  Double blocking in the superdeformed {sup 192}Tl nucleus , 1992 .

[26]  P. J. Daly,et al.  Shape-driving effects in 193Tl from the spectroscopy of yrast and near-yrast states , 1992 .

[27]  W. Nazarewicz,et al.  Coexistence in even-mass nuclei , 1992 .

[28]  F. Wolfs,et al.  Multiple band structures in 191Hg , 1992 .

[29]  W. H. Kelly,et al.  Superdeformed bands in195Tl , 1991 .

[30]  Davidson,et al.  High-spin structure of 189Tl: Role of h9/2 protons in the prolate minimum of light Hg isotopes. , 1991, Physical review. C, Nuclear physics.

[31]  W. Gast,et al.  Spectroscopy of195Hg and196Hg , 1991 .

[32]  T. Bengtsson A method to remove virtual interactions with applications to nuclear spectroscopy , 1989 .

[33]  Leander,et al.  Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam. , 1987, Physical review. C, Nuclear physics.

[34]  M. Guttormsen,et al.  High-spin structure of 190–194Hg and the cranked shell model , 1986 .

[35]  Leander,et al.  Role of deformation in the intrusion of the h9/2 levels below the Z=82 proton shell. , 1985, Physical review letters.

[36]  P. Hansen,et al.  REVIEW ARTICLE: Advances in studies of nuclei far from stability , 1985 .

[37]  I. Ragnarsson,et al.  Rotational bands and particle-hole excitations at very high spin , 1985 .

[38]  J. Wood,et al.  Coexistence in odd-mass nuclei , 1983 .

[39]  K. Hicks,et al.  Decays of /sup 194,195,196/Pb , 1982 .

[40]  H. Emling,et al.  Multiple Coulomb excitation of198Hg and200Hg , 1981 .

[41]  P. Thieberger,et al.  Structure in 200 Tl and the odd-even staggering in π~h 92 ⊗ν~i 132 bands , 1981 .

[42]  W. Kutschera,et al.  High spin states in /sup 194/Tl , 1979 .

[43]  W. Kutschera,et al.  Rotational structures in doubly odd transitional Tl nuclei , 1978 .

[44]  K. Fransson,et al.  Rotational bands in 195, 197Tl , 1978 .

[45]  H. Pauli,et al.  Internal conversion coefficients for all atomic shells , 1978 .

[46]  R. Tischler,et al.  High-Spin States in Even Hg Nuclei and Rotation Alignment in Hg-198 , 1977 .

[47]  J. Newton,et al.  A study of states in 201, 203Tl using the (d, 3nγ) reaction: A new 92− band , 1977 .

[48]  F. Stephens,et al.  Rotational bands in the light odd-mass Tl nuclei , 1974 .

[49]  F. Stephens,et al.  Possible oblate shape of 92− isomer in 199Tl , 1970 .

[50]  F. Stephens,et al.  Isomeric levels in the light thallium isotopes , 1963 .