Semantics for a Lambda Calculus for String Diagrams
暂无分享,去创建一个
Vladimir Zamdzhiev | Bert Lindenhovius | Michael Mislove | M. Mislove | B. Lindenhovius | Vladimir Zamdzhiev
[1] Daniel Lehmann,et al. Algebraic specification of data types: A synthetic approach , 1981, Mathematical systems theory.
[2] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[3] Pawel Sobocinski,et al. A Programming Language for Spatial Distribution of Net Systems , 2014, Petri Nets.
[4] Rory B. B. Lucyshyn-Wright,et al. Relative symmetric monoidal closed categories I: Autoenrichment and change of base , 2015, 1507.02220.
[5] Jennifer Paykin,et al. QWIRE: a core language for quantum circuits , 2017, POPL.
[6] Zainalabedin Navabi,et al. VHDL: Analysis and Modeling of Digital Systems , 1992 .
[7] Gérard Berry,et al. The chemical abstract machine , 1989, POPL '90.
[8] Vladimir Zamdzhiev,et al. Mixed linear and non-linear recursive types , 2019, Proc. ACM Program. Lang..
[9] Peter Selinger,et al. A categorical model for a quantum circuit description language , 2017, QPL.
[10] Sam Staton,et al. Classical Control and Quantum Circuits in Enriched Category Theory , 2018, MFPS.
[11] Simon Perdrix,et al. Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory , 2019, FoSSaCS.
[12] Sam Staton,et al. Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory , 2017, Log. Methods Comput. Sci..
[13] P. Freyd. Algebraically complete categories , 1991 .
[14] Michael Mislove,et al. Completing Simple Valuations in K-categories , 2020, Topology and its Applications.
[15] Benoît Valiron,et al. A linear-non-linear model for a computational call-by-value lambda calculus (extended abstract) , 2008, FoSSaCS.
[16] Marcelo P. Fiore. Axiomatic domain theory in categories of partial maps , 1994 .
[17] Philip Wadler,et al. Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[18] Nick Benton,et al. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.
[19] Radha Jagadeesan,et al. Full Abstraction for PCF , 1994, Inf. Comput..
[20] José Meseguer,et al. Petri nets are monoids: a new algebraic foundation for net theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.
[21] Amar Hadzihasanovic,et al. A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
[22] Notes for a course given at the Second EU/US Summer School on Automorphic Forms on SINGULAR MODULI AND MODULAR FORMS , 2014 .
[23] Donald E. Thomas,et al. The Verilog® Hardware Description Language , 1990 .
[24] Michael W. Mislove,et al. Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams , 2018, LICS.
[25] Samson Abramsky,et al. Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..
[26] Benoît Valiron,et al. Quipper: a scalable quantum programming language , 2013, PLDI.
[27] Torben Braüner,et al. A General Adequacy Result for a Linear Functional Language , 1994, Theoretical Computer Science.
[28] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.
[29] Dov M. Gabbay,et al. Handbook of Quantum Logic and Quantum Structures: Quantum Logic , 2009 .
[30] Jean-Yves Girard. On Geometry of Interaction , 1995 .
[31] Simon Perdrix,et al. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.
[32] Klaus Keimel,et al. D-completions and the d-topology , 2009, Ann. Pure Appl. Log..
[33] Vladimir Zamdzhiev,et al. LNL-FPC: The Linear/Non-linear Fixpoint Calculus , 2019, Log. Methods Comput. Sci..
[34] P. Selinger,et al. Quantum lambda calculus , 2010 .
[35] Owen Stephens,et al. Compositional specification and reachability checking of net systems , 2015 .
[36] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[37] Jean-Yves Girard,et al. Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..
[38] Rasmus Ejlers Møgelberg,et al. The enriched effect calculus: syntax and semantics , 2014, J. Log. Comput..
[39] Patrick Lincoln,et al. Linear logic , 1992, SIGA.