Semantics for a Lambda Calculus for String Diagrams

Linear/non-linear (LNL) models, as described by Benton, soundly model a LNL term calculus and LNL logic closely related to intuitionistic linear logic. Every such model induces a canonical enrichment that we show soundly models a LNL lambda calculus for string diagrams, introduced by Rios and Selinger (with primary application in quantum computing). Our abstract treatment of this language leads to simpler concrete models compared to those presented so far. We also extend the language with general recursion and prove soundness. Finally, we present an adequacy result for the diagram-free fragment of the language which corresponds to a modified version of Benton and Wadler’s adjoint calculus with recursion. In keeping with the purpose of the special issue, we also describe the influence of Samson Abramsky’s research on these results, and on the overall project of which this is a part.

[1]  Daniel Lehmann,et al.  Algebraic specification of data types: A synthetic approach , 1981, Mathematical systems theory.

[2]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[3]  Pawel Sobocinski,et al.  A Programming Language for Spatial Distribution of Net Systems , 2014, Petri Nets.

[4]  Rory B. B. Lucyshyn-Wright,et al.  Relative symmetric monoidal closed categories I: Autoenrichment and change of base , 2015, 1507.02220.

[5]  Jennifer Paykin,et al.  QWIRE: a core language for quantum circuits , 2017, POPL.

[6]  Zainalabedin Navabi,et al.  VHDL: Analysis and Modeling of Digital Systems , 1992 .

[7]  Gérard Berry,et al.  The chemical abstract machine , 1989, POPL '90.

[8]  Vladimir Zamdzhiev,et al.  Mixed linear and non-linear recursive types , 2019, Proc. ACM Program. Lang..

[9]  Peter Selinger,et al.  A categorical model for a quantum circuit description language , 2017, QPL.

[10]  Sam Staton,et al.  Classical Control and Quantum Circuits in Enriched Category Theory , 2018, MFPS.

[11]  Simon Perdrix,et al.  Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory , 2019, FoSSaCS.

[12]  Sam Staton,et al.  Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory , 2017, Log. Methods Comput. Sci..

[13]  P. Freyd Algebraically complete categories , 1991 .

[14]  Michael Mislove,et al.  Completing Simple Valuations in K-categories , 2020, Topology and its Applications.

[15]  Benoît Valiron,et al.  A linear-non-linear model for a computational call-by-value lambda calculus (extended abstract) , 2008, FoSSaCS.

[16]  Marcelo P. Fiore Axiomatic domain theory in categories of partial maps , 1994 .

[17]  Philip Wadler,et al.  Linear logic, monads and the lambda calculus , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[18]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[19]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[20]  José Meseguer,et al.  Petri nets are monoids: a new algebraic foundation for net theory , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[21]  Amar Hadzihasanovic,et al.  A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[22]  Notes for a course given at the Second EU/US Summer School on Automorphic Forms on SINGULAR MODULI AND MODULAR FORMS , 2014 .

[23]  Donald E. Thomas,et al.  The Verilog® Hardware Description Language , 1990 .

[24]  Michael W. Mislove,et al.  Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams , 2018, LICS.

[25]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[26]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[27]  Torben Braüner,et al.  A General Adequacy Result for a Linear Functional Language , 1994, Theoretical Computer Science.

[28]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[29]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Logic , 2009 .

[30]  Jean-Yves Girard On Geometry of Interaction , 1995 .

[31]  Simon Perdrix,et al.  A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.

[32]  Klaus Keimel,et al.  D-completions and the d-topology , 2009, Ann. Pure Appl. Log..

[33]  Vladimir Zamdzhiev,et al.  LNL-FPC: The Linear/Non-linear Fixpoint Calculus , 2019, Log. Methods Comput. Sci..

[34]  P. Selinger,et al.  Quantum lambda calculus , 2010 .

[35]  Owen Stephens,et al.  Compositional specification and reachability checking of net systems , 2015 .

[36]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[37]  Jean-Yves Girard,et al.  Geometry of Interaction V: Logic in the hyperfinite factor , 2011, Theor. Comput. Sci..

[38]  Rasmus Ejlers Møgelberg,et al.  The enriched effect calculus: syntax and semantics , 2014, J. Log. Comput..

[39]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.