Synthesis of 1,4-Diethynyl- and 1,1,4,4-Tetraethynylbutatrienes

In this paper, we report the synthesis and opto-electronic properties of differentially substituted 1,4-diethynyl- and 1,1,4,4-tetraethynylbuta-1,2,3-trienes. These novel chromophores greatly extend the series of building modules for oxidative coupling, which includes 1,2-diethynyl- and 1,1,2,2-tetraethynylethenes and 1,3-diethynylallenes (Fig. 1). A general synthesis of 1,1,4,4-tetraethynylbutatrienes, which tolerates a significant number of peripheral substituents, starts from pentadiynols that are oxidized to the corresponding dialkynyl ketones, followed by Corey–Fuchs dibromo-olefination, and transition metal mediated dimerization (Schemes 2 and 3). A similar protocol, including oxidation of propargyl aldehydes, dibromo-olefination, and dimerization yields the less stable 1,4-diethynylbutatrienes (Scheme 4). Attempts to prepare 1,1,4,4-tetraethynylbutatrienes with four terminal electron-donor-substituted aryl groups failed so far, mainly due to difficulties in the dibromoolefination step (Scheme 6). cis-trans-Isomerization of differentially substituted 1,1,4,4-tetraethynylbutatrienes is remarkably facile, with barriers to rotation in the range of those for peptide bond isomerization (ΔG≠≈20 kcal mol−1). Barriers to rotation of 1,4-diethynylbutatrienes are higher (ΔG≠≈25 kcal mol−1), allowing in some cases the isolation of pure isomers. Both UV/VIS spectroscopy (Figs. 2 and 3) and electrochemical studies (Table) demonstrate that the all-C-cores in diethynyl- and tetraethynylbutatrienes have strong electron-acceptor properties that are greatly enhanced with respect to those of diethynyl- and tetraethynylethenes with two C(sp)-atoms less. Substitution with peripheral electron donor groups leads to efficient intramolecular charge-transfer interactions, as evidenced by intense, bathochromically shifted longest-wavelength bands in the UV/VIS spectra.

[1]  F. Diederich,et al.  Redox Properties of Linear and Cyclic Scaffolds Based on Di‐ and Tetraethynylethene , 2004 .

[2]  F. Diederich,et al.  Peralkynylated buta-1,2,3-trienes: exceptionally low rotational barriers of cumulenic C=C bonds in the range of those of peptide C--N bonds. , 2004, Chemistry.

[3]  Pei-Hua Liu,et al.  Tetrabromobutatriene: completing the perhalocumulene series. , 2004, Organic letters.

[4]  F. Diederich,et al.  Donor‐Substituted Perethynylated Dehydroannulenes and Radiaannulenes: Acetylenic Carbon Sheets Featuring Intense Intramolecular Charge Transfer , 2004 .

[5]  B. Bildstein,et al.  α,ω-Diferrocenyl Cumulene Molecular Wires. Synthesis, Spectroscopy, Structure, and Electrochemistry , 2004 .

[6]  John E. Anthony,et al.  Functionalized Pentacene Active Layer Organic Thin‐Film Transistors , 2003 .

[7]  Tobin J Marks,et al.  Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors. , 2003, Angewandte Chemie.

[8]  M. Iyoda,et al.  Twin-rotor system created on a [4]radialene frame. , 2003, Organic letters.

[9]  A. V. Shastin,et al.  Novel efficient synthesis of dibromoalkenes. A first example of catalytic olefination of aliphatic carbonyl compounds. , 2003, Organic & biomolecular chemistry.

[10]  R. Tykwinski,et al.  Synthesis of unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes via alkylidene carbenoid rearrangements. , 2003, The Journal of organic chemistry.

[11]  Y. Fukuda,et al.  Rhodium Complexes of 1, 4-Disubstituted-1, 2, 3-butatrienes : Their Preparation and Reactivity , 2003 .

[12]  F. Diederich,et al.  Pi-electron conjugation effects in antiaromatic dehydro[12]- and aromatic dehydro[18]-annulenes. , 2002, Chemical communications.

[13]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[14]  P. Günter,et al.  Highly functionalized dimeric tetraethynylethenes and expanded radialenes: strong evidence for macrocyclic cross-conjugation. , 2001, Chemistry.

[15]  F. Diederich,et al.  1,3-Diethynylallenes: New Modules for Three-Dimensional Acetylenic Scaffolding. , 2001, Angewandte Chemie.

[16]  F. Diederich,et al.  Pt-tetraethynylethene molecular scaffolding: synthesis and characterization of a novel class of organometallic molecular rods. , 2001, Chemistry.

[17]  F. Diederich,et al.  Poly(triacetylene) Oligomers: Conformational Analysis by X‐Ray Crystallography and Synthesis of a 17.8‐nm‐Long Monodisperse 24‐mer , 2001 .

[18]  F. Diederich Carbon-rich acetylenic scaffolding: rods, rings and switches , 2001 .

[19]  Gunter,et al.  Monodisperse poly(triacetylene) oligomers extending from monomer to hexadecamer: joint experimental and theoretical investigation of physical properties , 2000, Chemistry.

[20]  François Diederich,et al.  Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen , 2000 .

[21]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[22]  M. Raghu,et al.  Chalcogenopyranones from disodium chalcogenide additions to 1,4-pentadiyn-3-ones. The role of enol ethers as intermediates , 1999 .

[23]  S. Pollack,et al.  Butatriene-Based Polymer Chemistry. 3.1 New Route to Substituted Poly(acetylene)s through the Base-Catalyzed Rearrangement of Poly(2-butyne-1,4-diyl)s , 1998 .

[24]  S. Pollack,et al.  Butatriene-Based Polymer Chemistry. 2. Synthesis and Characterization of Poly[1,1,4,4-bis(pentamethylene)-1,2,3-butatriene]†,1 , 1997 .

[25]  J. J. Clair SELECTIVE DETECTION OF THE CARBOHYDRATE-BOUND STATE OF CONCANVALIN A AT THE SINGLE MOLECULE LEVEL , 1997 .

[26]  Rainer E. Martin,et al.  Electronic Characteristics of Arylated Tetraethynylethenes: A Cooperative Computational and Electrochemical Investigation , 1997 .

[27]  F. Diederich,et al.  Towards the Synthesis of Tetraethynylallene , 1996 .

[28]  F. Diederich,et al.  Donor–acceptor substituted tetraethynylethenes , 1996 .

[29]  F. Diederich,et al.  Electrochemical properties of tetraethynylethenes, fully cross-conjugated Π-chromophores, and tetraethynylethene-based carbon-rich molecular rods and dehydroannulenes , 1995 .

[30]  F. Diederich,et al.  Tetraethynylethenes: Fully cross-conjugated π-electron chromophores and molecular scaffolds for all-carbon networks and carbon-rich nanomaterials , 1995 .

[31]  P. Seiler,et al.  Tetrakis(trialkylsilylethinyl)butatrien und 1,1,4,4‐Tetrakis(trialkylsilylethinyl)‐1,3‐butadien: neue kreuzkonjugierte Chromophore , 1993 .

[32]  F. Diederich,et al.  Tetrakis(trialkylsilylethynyl)butatriene and 1,1,4,4‐Tetrakis(trialkylsilylethynyl)‐1,3‐butadiene: Novel Cross‐Conjugated Chromophores , 1993 .

[33]  S. Pollack,et al.  Free-radical polymerization of bis(pentamethylene)butatriene. A novel monomer for the preparation of poly(2-butyne-1,4-diyl)s , 1993 .

[34]  D. Swenson,et al.  Synthesis of fluorinated 1,2,3-butatrienes from .alpha.-halovinyl organometallic reagents , 1993 .

[35]  K. Sarma,et al.  Stabilization energy of polyenyl radicals: all-trans-nonatetraenyl radical by thermal rearrangement of a semirigid {4-1-2} heptaene. Model for thermal lability of .beta.-carotene , 1992 .

[36]  G. Balavoine,et al.  Synthesis and some reactions of ferrocenylacetylenes , 1992 .

[37]  M. Boenke,et al.  Rotationsbarrieren Vinyl‐substituierter Olefine , 1991 .

[38]  T. Kitagawa,et al.  THERMAL CIS-TRANS REARRANGEMENT OF SEMIRIGID POLYENES AS A MODEL FOR THE ANTICARCINOGEN BETA -CAROTENE : AN ALL-TRANS-PENTAENE AND AN ALL-TRANS-HEPTAE NE , 1991 .

[39]  D. Yamashita,et al.  A new synthesis of substituted furans , 1989 .

[40]  M. Iyoda,et al.  Nickel-catalyzed cyclodimerization of [5]cumulene (hexapentaene). Synthesis of a novel [4]radialene system , 1989 .

[41]  M. Iyoda,et al.  A new approach to the construction of radialenes by the nickel-catalyzed cyclooligomerization of [3]cumulenes (butatrienes) , 1988 .

[42]  R. Jacobson,et al.  Small-ring cyclic cumulenes: synthesis and x-ray crystal structure of bis(triphenylphosphine)chloro(.eta.2-1,2,3-cyclononatriene)rhodium , 1987 .

[43]  M. Detty,et al.  Preparation of arylpropiolate esters from trichlorocyclopropenium cation and elaboration of the esters to unsymmetrical 1,4-pentadiyn-3-ones and unsymmetrical tellurapyranones , 1987 .

[44]  Y. Kai,et al.  Octaphenyl[4]radialene , 1986 .

[45]  P. Stang,et al.  Cumulenes as ligands. Synthesis and properties of .pi. complexes of substituted butatrienes with rhodium. X-ray crystal structure of bis(triphenylphosphine)chloro[1,1,2,2-tetramethyl-3-(3-methyl-1,2-butadienylidene)cyclopropane]rhodium , 1983 .

[46]  W. Roth,et al.  Rotationsbarriere der geometrischen Isomerisierung von cis‐und trans‐1,4‐Dimethylbutatrien , 1976 .

[47]  E. Müller,et al.  Decarbonylierung durch Komplexbildung von α,α′‐Diäthinylketonen mit Tris(triphenylphosphin)rhodium(I)‐chlorid: Eine neue Methode zur Herstellung von konjugierten Diinen , 1973 .

[48]  W. Doering,et al.  Delocalization resonance energy of the allylic radical from the geometrical isomerization of hexa-1,3,5-trienes , 1973 .

[49]  G. Whitesides,et al.  Thermal decomposition of vinylic copper(I) and silver(I) organometallic compounds , 1971 .