Diffusion-redistanciation schemes for 2D and 3D constrained Willmore flow: application to the equilibrium shapes of vesicles

In this paper we present a novel algorithm for simulating the Willmore flow with conservation of volume and area. The idea is to adapt the class of diffusion-redistanciation algorithms to the Willmore flow or high-order geometrical flows and extend it in dimension three. These algorithms rely on alternating a diffusion of the signed distance function to the interface and a redistanciation step, following Merriman, Bence, and Osher's ideas. The constraints are enforced between the diffusion and redistanciation steps via a simple rescaling method. The energy globally decreases at the end of each global step. The algorithm features the computational efficiency of thresholding methods without requiring adaptive remeshing thanks to the use of a signed distance function to describe the interface. This opens its application to dynamic fluid-structure simulations. The methodology is validated by computing the equilibrium shapes of two and three-dimensional vesicles, as well as the Clifford torus.

[1]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[2]  Fernando C. Marques,et al.  Min-Max theory and the Willmore conjecture , 2012, 1202.6036.

[3]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[4]  Elie Bretin,et al.  Phase-field approximations of the Willmore functional and flow , 2013, Numerische Mathematik.

[5]  Steven J. Ruuth,et al.  Threshold dynamics for high order geometric motions , 2006 .

[6]  T. Willmore Riemannian geometry , 1993 .

[7]  Jens Harting,et al.  Two-dimensional vesicle dynamics under shear flow: effect of confinement. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gonçalo Pena,et al.  Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods , 2012 .

[9]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[10]  Alexei Heintz,et al.  A convolution thresholding scheme for the Willmore flow , 2008 .

[11]  Antonin Chambolle,et al.  Convergence of an Algorithm for the Anisotropic and Crystalline Mean Curvature Flow , 2006, SIAM J. Math. Anal..

[12]  G. Cottet,et al.  A level-set formulation of immersed boundary methods for fluid–structure interaction problems , 2004 .

[13]  Christophe Prud'homme,et al.  A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations , 2006, Sci. Program..

[14]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[15]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[16]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[17]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[18]  T. Biben,et al.  Steady to unsteady dynamics of a vesicle in a flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  G. Cottet,et al.  A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES , 2006 .

[20]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[21]  Pierre Saramito,et al.  Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods , 2014, J. Comput. Phys..

[22]  Steven J. Ruuth A Diffusion-Generated Approach to Multiphase Motion , 1998 .

[23]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[24]  Emmanuel Maitre,et al.  A semi-implicit level set method for multiphase flows and fluid-structure interaction problems , 2016, J. Comput. Phys..

[25]  Raducanu Razvan,et al.  MATHEMATICAL MODELS and METHODS in APPLIED SCIENCES , 2012 .

[26]  Frederick Stern,et al.  A highly scalable massively parallel fast marching method for the Eikonal equation , 2015, J. Comput. Phys..

[27]  M. Ismail,et al.  A necklace model for vesicles simulations in 2D , 2012, 1202.3034.

[28]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[29]  Tim Laux,et al.  Convergence of thresholding schemes incorporating bulk effects , 2016, 1601.02467.

[30]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[31]  Tim Laux Gradient-flow techniques for the analysis of numerical schemes for multi-phase mean-curvature flow , 2018 .

[32]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[33]  Paj Peter Hilbers,et al.  Vesicle shapes from molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[34]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[36]  Klaus Kassner,et al.  Phase-field approach to three-dimensional vesicle dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Christophe Prud'homme,et al.  Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics , 2013, J. Comput. Appl. Math..

[38]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[39]  David Salac,et al.  A level set projection model of lipid vesicles in general flows , 2011, J. Comput. Phys..

[40]  L. Simon Existence of surfaces minimizing the Willmore functional , 1993 .

[41]  Seifert,et al.  Conformal degeneracy and conformal diffusion of vesicles. , 1993, Physical review letters.

[42]  Steven J. Ruuth,et al.  Diffusion generated motion using signed distance functions , 2010, J. Comput. Phys..

[43]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[44]  Axel Voigt,et al.  Surface Phase Separation and Flow in a Simple Model of Multicomponent Drops and Vesicles , 2007 .

[45]  A. Smolianski Finite‐element/level‐set/operator‐splitting (FELSOS) approach for computing two‐fluid unsteady flows with free moving interfaces , 2005 .

[46]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Emmanuel Maitre,et al.  Applications of level set methods in computational biophysics , 2009, Math. Comput. Model..

[48]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[49]  Felix Otto,et al.  Threshold Dynamics for Networks with Arbitrary Surface Tensions , 2015 .

[50]  John Sullivan,et al.  Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms , 1992, Exp. Math..

[51]  Drew Swartz,et al.  Convergence of diffusion generated motion to motion by mean curvature , 2017, 1703.06519.

[52]  F. Otto,et al.  The thresholding scheme for mean curvature flow and de Giorgi's ideas for minimizing movements , 2019, 1910.11442.

[53]  F. Otto,et al.  Convergence of the thresholding scheme for multi-phase mean-curvature flow , 2016, 1602.05857.

[54]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  F. Otto,et al.  Brakke’s inequality for the thresholding scheme , 2017, Calculus of Variations and Partial Differential Equations.

[56]  Jeffrey A. Fessler,et al.  Algorithms for Area Preserving Flows , 2011, SIAM J. Sci. Comput..

[57]  Luca Mugnai,et al.  Global solutions to the volume-preserving mean-curvature flow , 2015, 1502.07232.

[58]  Steven J. Ruuth,et al.  A Simple Scheme for Volume-Preserving Motion by Mean Curvature , 2003, J. Sci. Comput..

[59]  Christophe Prud'homme,et al.  High-Order Finite-Element Framework for the Efficient Simulation of Multifluid Flows , 2018, Mathematics.

[60]  T. Biben,et al.  Tumbling of vesicles under shear flow within an advected-field approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .