Localization of eigenvectors in random graphs

AbstractUsing exact numerical diagonalization, we investigate localization in two classes of random matrices corresponding to random graphs. The first class comprises the adjacency matrices of Erdős-Rényi (ER) random graphs. The second one corresponds to random cubic graphs, with Gaussian random variables on the diagonal. We establish the position of the mobility edge, applying the finite-size analysis of the inverse participation ratio. The fraction of localized states is rather small on the ER graphs and decreases when the average degree increases. On the contrary, on cubic graphs the fraction of localized states is large and tends to 1 when the strength of the disorder increases, implying that for sufficiently strong disorder all states are localized. The distribution of the inverse participation ratio in localized phase has finite width when the system size tends to infinity and exhibits complicated multi-peak structure. We also confirm that the statistics of level spacings is Poissonian in the localized regime, while for extended states it corresponds to the Gaussian orthogonal ensemble.

[1]  Y. Fyodorov,et al.  A novel field theoretical approach to the Anderson localization : sparse random hopping model , 1992 .

[2]  G. Biroli,et al.  Anderson Model on Bethe Lattices : Density of States, Localization Properties and Isolated Eigenvalue(Frontiers in Nonequilibrium Physics-Fundamental Theory, Glassy & Granular Materials, and Computational Physics-) , 2010, 1005.0342.

[3]  Rodgers,et al.  Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.

[4]  O. Golinelli,et al.  Random Incidence Matrices: Moments of the Spectral Density , 2001 .

[5]  S. Girvin,et al.  Dynamical electron-phonon interaction and conductivity in strongly disordered metal alloys , 1980 .

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  R. Kuehn,et al.  Spectra of modular and small-world matrices , 2010, ArXiv.

[8]  The localization transition on the Bethe lattice , 1983 .

[9]  Roberto F. S. Andrade,et al.  Localization properties of a tight-binding electronic model on the Apollonian network , 2008 .

[10]  T. Garel,et al.  Anderson localization of phonons in dimension d = 1 , 2 , 3 : Finite-size properties of the inverse participation ratios of eigenstates , 2010, 1003.5988.

[11]  G. J. Rodgers,et al.  Density of states of sparse random matrices , 1990 .

[12]  Sarika Jalan,et al.  Random matrix analysis of localization properties of gene coexpression network. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Guilhem Semerjian,et al.  Sparse random matrices: the eigenvalue spectrum revisited , 2002 .

[14]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[15]  E. Economou,et al.  Existence of Mobility Edges in Anderson's Model for Random Lattices , 1972 .

[16]  R. Kuehn Spectra of sparse random matrices , 2008, 0803.2886.

[17]  P. Anderson,et al.  A selfconsistent theory of localization , 1973 .

[18]  S. Ciliberti,et al.  Anderson localization in Euclidean random matrices , 2005 .

[19]  Koujin Takeda,et al.  Cavity approach to the spectral density of sparse symmetric random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[21]  C. Mccombie,et al.  Solid-State Physics , 1965, Nature.

[22]  Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. , 1992 .

[23]  B. M. Fulk MATH , 1992 .

[24]  Simón,et al.  What is localization? , 1995, Physical review letters.

[25]  Marc Lelarge,et al.  Resolvent of large random graphs , 2010 .

[26]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[27]  D. Thouless,et al.  Self-consistent theory of localization. II. Localization near the band edges , 1974 .

[28]  Logan,et al.  Anderson localization in topologically disordered systems. , 1985, Physical Review B (Condensed Matter).

[29]  F. Slanina Equivalence of replica and cavity methods for computing spectra of sparse random matrices. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Analytic computation of the instantaneous normal modes spectrum in low-density liquids , 1999, cond-mat/9903155.

[31]  D. Vollhardt,et al.  Diagrammatic, self-consistent treatment of the Anderson localization problem in d<=2 dimensions , 1980 .

[32]  F L Metz,et al.  Localization transition in symmetric random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  F. Wegner Disordered system with n orbitals per site: n= [] limit , 1979 .

[34]  K. Efetov,et al.  Effective medium approximation in the localization theory: Saddle point in a lagrangian formulation , 1990 .

[35]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[36]  K. Efetov Supersymmetry and theory of disordered metals , 1983 .

[37]  Frantisek Slanina,et al.  Eigenvector Localization as a Tool to Study Small Communities in Online Social Networks , 2010, Adv. Complex Syst..

[38]  Dima Shepelyansky,et al.  Delocalization transition for the Google matrix , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[40]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[41]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[43]  Peter Markos Numerical analysis of the Anderson localization , 2006 .

[44]  S Havlin,et al.  Localization transition on complex networks via spectral statistics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Fyodorov,et al.  Localization in ensemble of sparse random matrices. , 1991, Physical review letters.

[46]  T. Garel,et al.  Anderson localization on the Cayley tree: multifractal statistics of the transmission at criticality and off criticality , 2011, 1101.0982.

[47]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  G. J. Rodgers,et al.  Eigenvalue distribution of large dilute random matrices , 1997 .

[49]  F. Slanina,et al.  Selective advantage of topological disorder in biological evolution , 2002, cond-mat/0208552.

[50]  E. Economou,et al.  Absence of Anderson's transition in random lattices with off-diagonal disorder , 1977 .

[51]  B. Simon,et al.  From power-localized to extended states in a class of one-dimensional disordered systems , 1984 .

[52]  Y. Fyodorov,et al.  On the density of states of sparse random matrices , 1991 .

[53]  Peter Stollmann,et al.  Caught by disorder , 2001 .

[54]  S. Evangelou A numerical study of sparse random matrices , 1992 .

[55]  S. N. Evangelou Quantum percolation and the Anderson transition in dilute systems , 1983 .

[56]  Z. Burda,et al.  Localization of the maximal entropy random walk. , 2008, Physical review letters.

[57]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[58]  Baowen Li,et al.  Localizations on Complex Networks , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Y. Fyodorov,et al.  Localization transition in the Anderson model on the Bethe lattice: Spontaneous symmetry breaking and correlation functions , 1991 .