Generating functions for stochastic symplectic methods
暂无分享,去创建一个
[1] T. Misawa. A stochastic Hamilton-Jacobi theory in stochastic Hamiltonian mechanics for diffusion processes , 1987 .
[2] Desmond J. Higham,et al. Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .
[3] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[4] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[5] G. N. Milstein,et al. Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..
[6] Juan-Pablo Ortega,et al. The stochastic Hamilton-Jacobi equation , 2008, 0806.0993.
[7] Xuerong Mao,et al. Stochastic differential equations and their applications , 1997 .
[8] G. N. Milstein,et al. Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..
[9] G. Milstein. Numerical Integration of Stochastic Differential Equations , 1994 .
[10] Desmond J. Higham,et al. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..
[11] Lijin Wang,et al. Predictor-corrector methods for a linear stochastic oscillator with additive noise , 2007, Math. Comput. Model..
[12] Melvin Leok,et al. Discrete Hamiltonian Variational Integrators , 2010, 1001.1408.
[13] Xiaohua Ding,et al. Symplectic conditions and stochastic generating functions of stochastic Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise , 2012, Appl. Math. Comput..
[14] Kevin Burrage,et al. Order Conditions of Stochastic Runge-Kutta Methods by B-Series , 2000, SIAM J. Numer. Anal..
[15] R. D. Vogelaere,et al. Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .
[16] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[17] T. Misawa. On stochastic Hamiltonian mechanics for diffusion processes , 1986 .