Design of asynchronous dielectric micromotors

Abstract This paper compares asynchronously and synchronously driven dielectric micromotors. The following advantages of an asynchronous motor are discussed. (i) Flexibility of the micromotor geometry. (ii) Simple design which allows for operation of rotors in electrolyte solutions (e.g. water) that may be pumped in this way. (iii) Opportunity to use negative dielectrophoretic forces to stabilise the rotors. To predict some properties of dielectric motors we have modelled their rotors geometrically as ellipsoids. This model is consistent with the experimental results and shows that motor operation is a complex function of geometry, driving frequency and material properties. Although the general motor characteristics (torque's) of asynchronously and synchronously driven motors are quite similar both motor types are sufficiently different in detail. Therefore, it is worth to design motors using special properties of the asynchronous principle.

[1]  M. Allen,et al.  A planar variable reluctance magnetic micromotor with fully integrated stator and wrapped coils , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[2]  G. Fuhr,et al.  Traveling‐wave dielectrophoresis of microparticles , 1992, Electrophoresis.

[3]  David R. Day Fabrication of Conductive Polyimide-Gate Transistors , 1984 .

[4]  J. H. Lang,et al.  Operation of microfabricated harmonic and ordinary side-drive motors , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[5]  J. Lang,et al.  Electric micromotor dynamics , 1992 .

[6]  W. Benecke,et al.  Microfabricated actuator with moving permanent magnet , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[7]  K. J. Gabriel,et al.  Design considerations for a practical electrostatic micro-motor , 1987 .

[8]  Arnold W. Yanof Electron-Beam, X-Ray, and Ion-Beam Technology: Submicrometer Lithographies VIII , 1989 .

[9]  H P Schwan,et al.  Response of nonspherical biological particles to alternating electric fields. , 1966, Biophysical journal.

[10]  T. Christenson,et al.  A first functional current excited planar rotational magnetic micromotor , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[11]  Koji Asami,et al.  Dielectric Approach to Suspensions of Ellipsoidal Particles Covered with a Shell in Particular Reference to Biological Cells , 1980 .

[12]  W. Menz,et al.  Theoretical and experimental results of an electrostatic micro motor with large gear ratio fabricated by the LIGA process , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[13]  U. Stille,et al.  Der Entmagnetisierungsfaktor und Entelektrisierungsfaktor für Rotationsellipsoide , 1944 .

[14]  S. F. Bart,et al.  Electroquasistatic induction micromotors , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[15]  K. Najafi,et al.  Batch fabrication and assembly of micromotor-driven mechanisms with multi-level linkages , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[16]  J. Ubbink Optimization of the rotor surface resistance of the asynchronous electrostatic motor , 1970 .

[17]  M. Mehregany,et al.  Measurement of micromotor dynamics in lubricating fluids , 1993, [1993] Proceedings IEEE Micro Electro Mechanical Systems.

[18]  T. Jones,et al.  Electro-orientation of ellipsoidal erythrocytes. Theory and experiment. , 1993, Biophysical journal.

[19]  C. Kooy Torque on a resistive rotor in a quasi electrostatic rotating field , 1969 .

[20]  W. Windbracke,et al.  Thermal Annealing Effects on the Mechanical Properties of Plasma‐Enhanced Chemical Vapor Deposited Silicon Oxide Films , 1992 .

[21]  Jan Gimsa,et al.  Analysis of the torque-frequency characteristics of dielectric induction motors , 1992 .

[22]  Stephen F. Bart,et al.  Principles in design and microfabrication of variable-capacitance side-drive motors , 1990 .

[23]  B Wagner,et al.  Levitation, holding, and rotation of cells within traps made by high-frequency fields. , 1992, Biochimica et biophysica acta.

[24]  Stephen C. Jacobsen,et al.  A design overview of an eccentric-motion electrostatic microactuator (the wobble motor) , 1989 .

[25]  W. Benecke,et al.  Linear and rotational magnetic micromotors fabricated using silicon technology , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[26]  Yu-Chong Tai,et al.  IC-processed electrostatic synchronous micromotors , 1989 .

[27]  R. Paul,et al.  The theory of the frequency response of ellipsoidal biological cells in rotating electrical fields. , 1991, Journal of theoretical biology.

[28]  藤正 巌,et al.  IEEE Micro Electro Mechanical Systems Workshop. , 1989 .

[29]  Stephen F. Bart,et al.  Design considerations for micromachined electric actuators , 1988 .

[30]  H. R. Hertz Ueber die Vertheilung der Electricitt auf der Oberflche bewegter Leiter , 1881 .

[31]  L. E. Cross,et al.  Ferroelectric thin film ultrasonic micromotors , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[32]  Peter Lertes Untersuchungen über Rotationen von dielektrischen Flüssigkeiten im elektrostatischen Drehfeld , 1921 .

[33]  Mehran Mehregany,et al.  Micromotor operation in a liquid environment , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[34]  Albert P. Pisano,et al.  Polysilicon micro vibromotors , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.