Inverted indium-tin-oxide-free cone-shaped polymer solar cells for light trapping

Based on the flexibility of polymer film, cone-shaped polymer solar cells (PSCs) are fabricated and studied. Effective light trapping is achieved due to multi-absorption in all 360° directions. Monte Carlo ray tracing is used to simulate the absorption of cone-shaped PSCs with two variables: wavelength and half cone angle. With an inverted indium-tin-oxide-free device structure, a 43% enhanced light utilization without loss of material utilization is realized in the cone-shaped PSCs with a half cone angle of 45°, compared with the planar PSCs.

[1]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[2]  André Moliton,et al.  Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency , 2008 .

[3]  E. Chang,et al.  Enhancing the efficiency of MEH-PPV and PCBM based polymer solar cells via optimization of device configuration and processing conditions , 2006 .

[4]  Max Shtein,et al.  Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography , 2007 .

[5]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[6]  K. Liao,et al.  Flexible Ag electrode for use in organic photovoltaics , 2011 .

[7]  R. Curry,et al.  Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency , 2008 .

[8]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[9]  X. Liu,et al.  Tunable Fabry-Perot interferometer from ferroelectric polymer based on surface energy modification. , 2010, Optics express.

[10]  O. Inganäs,et al.  Multifolded Polymer Solar Cells on Flexible Substrates , 2008 .

[11]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[12]  Paul W. M. Blom,et al.  Organic Tandem and Multi‐Junction Solar Cells , 2008 .

[13]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[14]  Bloomer,et al.  Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. , 1986, Physical review. B, Condensed matter.

[15]  D. Choi,et al.  Effect of the ordered 2D-dot nano-patterned anode for polymer solar cells , 2010 .

[16]  Juhwan Kim,et al.  Efficient Polymer Solar Cells with Surface Relief Gratings Fabricated by Simple Soft Lithography , 2008 .

[17]  Olle Inganäs,et al.  Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells , 2012, Advanced materials.

[18]  Viktor Andersson,et al.  Optical modeling of a folded organic solar cell , 2008 .

[19]  Mikkel Jørgensen,et al.  ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules , 2011 .

[20]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[21]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[22]  Jamie D. Phillips,et al.  Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms , 2008 .

[23]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .