Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model

[1]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[2]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[3]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[4]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[5]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[6]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[7]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[8]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[9]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[10]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[11]  Ralph E. White,et al.  Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy , 1998 .

[12]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[13]  Karen E. Thomas,et al.  Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide , 2001 .

[14]  Ralph E. White,et al.  Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient , 2001 .

[15]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[16]  J. Newman,et al.  Monte Carlo Simulation of the Open-Circuit Potential and the Entropy of Reaction in Lithium Manganese Oxide , 2002 .

[17]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[18]  M. Verbrugge,et al.  Electrochemical analysis of lithiated graphite anodes , 2003 .

[19]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[20]  Gan Ning,et al.  Cycle Life Modeling of Lithium-Ion Batteries , 2004 .

[21]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[22]  Ralph E. White,et al.  A New Kinetic Equation for Intercalation Electrodes , 2006 .

[23]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[24]  Ralph E. White,et al.  Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model , 2007 .

[25]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[26]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .

[27]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .