Universal CA ’ s Based on the Collisions of Soft Spheres
暂无分享,去创建一个
[1] Ralph Baierlein,et al. Atoms and information theory: An introduction to statistical mechanics , 1971 .
[2] E. R. Banks. INFORMATION PROCESSING AND TRANSMISSION IN CELLULAR AUTOMATA , 1971 .
[3] Y. Pomeau,et al. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .
[4] Charles H. Bennett,et al. The thermodynamics of computation—a review , 1982 .
[5] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[6] N. Margolus. Physics-like models of computation☆ , 1984 .
[7] Frisch,et al. Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .
[8] Mark D. Semon,et al. New Techniques and Ideas in Quantum Measurement Theory , 1988 .
[9] N. Margolus. A Bridge Of Bits , 1992, Workshop on Physics and Computation.
[10] Anthony J. G. Hey,et al. Feynman Lectures on Computation , 1996 .
[11] Cristopher Moore,et al. Lattice Gas Prediction is P-Complete , 1997, comp-gas/9704001.
[12] N. Margolus,et al. The maximum speed of dynamical evolution , 1997, quant-ph/9710043.
[13] Franco Bagnoli,et al. Cellular Automata , 2002, Lecture Notes in Computer Science.
[14] R M D'Souza,et al. Thermodynamically reversible generalization of diffusion limited aggregation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] Lov K. Grover,et al. Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).
[16] R. D’Souza. Macroscopic order from reversible and stochastic lattice growth models , 1999 .
[17] Michael P. Frank,et al. Reversibility for efficient computing , 1999 .
[18] Norman H. Margolus,et al. Crystalline computation , 1998, comp-gas/9811002.