Nanoscale Materials for Tackling Brain Cancer: Recent Progress and Outlook

This article reports on recent progress in the development of advanced nanoscale photoreactive, magnetic and multifunctional materials applicable to brain cancer diagnostics, imaging, and therapy, with an emphasis on the latest contributions and the novelty of the approach, along with the most promising emergent trends.

[1]  R. Superfine,et al.  Size-uniform 200 nm particles: fabrication and application to magnetofection. , 2009, Journal of biomedical nanotechnology.

[2]  Changsheng Xie,et al.  Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. , 2004, Biomaterials.

[3]  M. Álvarez,et al.  Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. , 2008, Acta biomaterialia.

[4]  H. Tseng,et al.  Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. , 2010, Angewandte Chemie.

[5]  Zhichuan J. Xu,et al.  Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles , 2010, Advanced materials.

[6]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[7]  Xinmai Yang,et al.  Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. , 2007, Nano letters.

[8]  N. Dimitrijević,et al.  Photosensitization of CdSe/ZnS QDs and reliability of assays for reactive oxygen species production. , 2010, Nanoscale.

[9]  Donghoon Lee,et al.  In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. , 2008, Small.

[10]  Tayyaba Hasan,et al.  Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. , 2010, Chemical reviews.

[11]  Catherine C. Berry,et al.  Progress in functionalization of magnetic nanoparticles for applications in biomedicine , 2009 .

[12]  Q. Pankhurst,et al.  Progress in applications of magnetic nanoparticles in biomedicine , 2009 .

[13]  Shan X. Wang,et al.  Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook , 2008, IEEE Transactions on Magnetics.

[14]  Mingyuan Gao,et al.  Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications , 2009 .

[15]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[16]  Sanjiv S Gambhir,et al.  Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation. , 2009, Angewandte Chemie.

[17]  Huibi Xu,et al.  An attempt to directly trace polymeric nanoparticles in vivo with electron microscopy. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[18]  M. Sökmen,et al.  Disinfection of E. coli by the Ag-TiO2/UV system: lipidperoxidation , 2001 .

[19]  R. Puri,et al.  In Vivo Overexpression of IL-13 Receptor α2 Chain Inhibits Tumorigenicity of Human Breast and Pancreatic Tumors in Immunodeficient Mice , 2001, The Journal of experimental medicine.

[20]  A novel CD4‐conjugated ultraviolet light‐activated photocatalyst inactivates HIV‐1 and SIV efficiently , 2008, Journal of medical virology.

[21]  N. Dimitrijević,et al.  Titanium dioxide nanoparticles in advanced imaging and nanotherapeutics. , 2011, Methods in molecular biology.

[22]  Pedro Tartaj,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2009 .

[23]  K. Krishnan Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy , 2010, IEEE Transactions on Magnetics.

[24]  C. Hadjipanayis,et al.  EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. , 2010, Cancer research.

[25]  Henry Hirschberg,et al.  Photodynamic therapy of newly implanted glioma cells in the rat brain , 2006, Lasers in surgery and medicine.

[26]  Wei-Yu Lin,et al.  Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. , 2010, Angewandte Chemie.

[27]  W. Pardridge Drug Targeting to the Brain , 2007, Pharmaceutical Research.

[28]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[29]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[30]  L. Lévy,et al.  Pp IX Silica Nanoparticles Demonstrate Differential Interactions with In Vitro Tumor Cell Lines and In Vivo Mouse Models of Human Cancers , 2010, Photochemistry and photobiology.

[31]  Santosh Kesari,et al.  Malignant gliomas in adults. , 2008, The New England journal of medicine.

[32]  A. Fujishima,et al.  Photokilling of T-24 human bladder cancer cells with titanium dioxide. , 1994, British Journal of Cancer.

[33]  E. Neuwelt,et al.  Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours , 2004, Neuropathology and applied neurobiology.

[34]  Rakesh K. Jain,et al.  Transport of molecules across tumor vasculature , 2004, Cancer and Metastasis Reviews.

[35]  H. Sarin Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors , 2009, Journal of Translational Medicine.

[36]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[37]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[38]  W. Debinski,et al.  Molecular Expression Analysis of Restrictive Receptor for Interleukin 13, a Brain Tumor-associated Cancer/Testis Antigen , 2000, Molecular medicine.

[39]  Y. Iwasaki,et al.  Novel Photodynamic Therapy Using Water‐dispersed TiO2–Polyethylene Glycol Compound: Evaluation of Antitumor Effect on Glioma Cells and Spheroids In Vitro , 2010, Photochemistry and photobiology.

[40]  R. Puri,et al.  Identification of Distinct Roles for a Dileucine and a Tyrosine Internalization Motif in the Interleukin (IL)-13 Binding Component IL-13 Receptor α2 Chain* , 2001, The Journal of Biological Chemistry.

[41]  Charles M. Lieber,et al.  Nanomaterials for Neural Interfaces , 2009 .

[42]  N. Dimitrijević,et al.  Dynamics of localized charges in dopamine-modified TiO(2) and their effect on the formation of reactive oxygen species. , 2009, Journal of the American Chemical Society.

[43]  Alan Koretsky,et al.  Micro-engineered local field control for high-sensitivity multispectral MRI , 2008, Nature.

[44]  Donald E Ingber,et al.  Nanomagnetic actuation of receptor-mediated signal transduction. , 2008, Nature nanotechnology.

[45]  Sen Yang,et al.  Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging , 2010 .

[46]  Raoul Kopelman,et al.  Vascular Targeted Nanoparticles for Imaging and Treatment of Brain Tumors , 2006, Clinical Cancer Research.

[47]  David A Potter,et al.  Gene silencing for epidermal growth factor receptor variant III induces cell-specific cytotoxicity , 2008, Molecular Cancer Therapeutics.

[48]  Hong Qing,et al.  Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells , 2008, Nanotechnology.

[49]  A. Fujishima,et al.  Induction of cytotoxicity by photoexcited TiO2 particles. , 1992, Cancer research.

[50]  Barry Lai,et al.  A high-performance nanobio photocatalyst for targeted brain cancer therapy. , 2009, Nano letters.

[51]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[52]  Nina M. Muñoz,et al.  Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci. , 2007, Cancer research.

[53]  Y. Suh,et al.  Multifunctional nanosystems at the interface of physical and life sciences , 2009 .

[54]  T. E. Cloete,et al.  Nanotechnology and Water Treatment: Applications and Emerging Opportunities , 2008 .

[55]  T. Lee,et al.  Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells. , 1998, Mutation research.

[56]  Kezheng Chen,et al.  Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation , 2010, Nanotechnology.

[57]  A. Fujishima,et al.  Photokilling of Malignant Cells with Ultrafine TiO2 Powder , 1991 .

[58]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[59]  E. Martínez,et al.  Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo tests with C6 animal model on Wistar rats. , 2010, European journal of medicinal chemistry.

[60]  J. Benoit,et al.  Lipid nanocapsules: a new platform for nanomedicine. , 2009, International journal of pharmaceutics.

[61]  R. Jain,et al.  Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Ralu Divan,et al.  Ferromagnetic microdisks as carriers for biomedical applications , 2009 .

[63]  H. Dvorak,et al.  Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. , 1999, Current topics in microbiology and immunology.

[64]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[65]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[66]  Harald Ittrich,et al.  Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. , 2009, Nature nanotechnology.

[67]  M. Miki-Yoshida,et al.  Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO(2) based thin films. , 2002, FEMS microbiology letters.

[68]  N. Dimitrijević,et al.  Assembly and charge transfer in hybrid TiO(2) architectures using biotin-avidin as a connector. , 2005, Journal of the American Chemical Society.

[69]  R Weissleder,et al.  Improved delineation of human brain tumors on MR images using a long‐circulating, superparamagnetic iron oxide agent , 1999, Journal of magnetic resonance imaging : JMRI.

[70]  R. Gilbertson,et al.  Medulloblastoma: signalling a change in treatment. , 2004, The Lancet. Oncology.

[71]  W. Debinski,et al.  Interleukin-13 Receptor α2, EphA2, and Fos-Related Antigen 1 as Molecular Denominators of High-Grade Astrocytomas and Specific Targets for Combinatorial Therapy , 2008, Clinical Cancer Research.

[72]  H. Utsumi,et al.  Quantitative determination of OH radical generation and its cytotoxicity induced by TiO(2)-UVA treatment. , 2002, Toxicology in vitro : an international journal published in association with BIBRA.

[73]  Tae Seok Seo,et al.  A graphene oxide based immuno-biosensor for pathogen detection. , 2010, Angewandte Chemie.

[74]  Manojit Pramanik,et al.  Molecular photoacoustic imaging of angiogenesis with integrin‐targeted gold nanobeacons , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[75]  W. Sweet,et al.  The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. , 1951, The New England journal of medicine.

[76]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[77]  A. Mintz,et al.  IL-13Rα2 is a Glioma-Restricted Receptor for Interleukin-13 , 2002 .

[78]  K. Szaciłowski,et al.  Bioinorganic photochemistry: frontiers and mechanisms. , 2005, Chemical reviews.

[79]  Karl-Titus Hoffmann,et al.  Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. , 2009, Biomaterials.

[80]  Norbert F. Scherer,et al.  Charge Transfer Across the Nanocrystalline-DNA Interface: Probing DNA Recognition , 2004 .

[81]  B. Wilson,et al.  PHOTODYNAMIC THERAPY OF MALIGNANT PRIMARY BRAIN TUMOURS: CLINICAL EFFECTS, POSTOPERATIVE ICP, and LIGHT PENETRATION OF THE BRAIN , 1987, Photochemistry and photobiology.

[82]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[83]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[84]  Gabriel A Silva,et al.  Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. , 2007, Surgical neurology.

[85]  J. Cheon,et al.  Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. , 2007, Small.

[86]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[87]  Wei Lu,et al.  Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. , 2010, Biomaterials.

[88]  Kayano Sunada,et al.  Studies on photokilling of bacteria on TiO2 thin film , 2003 .

[89]  James I. Cohen,et al.  Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. , 2002, AJNR. American journal of neuroradiology.

[90]  Wei Wang,et al.  Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography , 2008, Proceedings of the IEEE.

[91]  Xiaoyuan Chen,et al.  Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. , 2009, Biomaterials.

[92]  Jennifer L. West,et al.  Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines , 2007, Journal of Neuro-Oncology.

[93]  A. Fujishima,et al.  SELECTIVE KILLING OF A SINGLE CANCEROUS T24 CELL WITH TIO2 SEMICONDUCTING MICROELECTRODE UNDER IRRADIATION , 1995 .

[94]  Colin M. Wilson,et al.  Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells , 2008, Journal of Translational Medicine.

[95]  A. Jordan,et al.  Clinical applications of magnetic nanoparticles for hyperthermia , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[96]  Guglielmo Lanzani,et al.  CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. , 2009, Journal of the American Chemical Society.

[97]  Tijana Rajh,et al.  Surface states of titanium dioxide nanoparticles modified with enediol ligands. , 2006, The journal of physical chemistry. B.

[98]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[99]  V. Wallace,et al.  Photodynamic Therapy of Human Glioma Spheroids Using 5-Aminolevulinic Acid¶ , 2000, Photochemistry and photobiology.

[100]  Henry Hirschberg,et al.  Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model. , 2006, Journal of neurosurgery.

[101]  H. Hirschberg,et al.  Photodynamic therapy and detection of high-grade gliomas. , 2006, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.

[102]  Diana Suffern,et al.  Photophysics of dopamine-modified quantum dots and effects on biological systems , 2006, Nature materials.

[103]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[104]  Darlene K. Slattery,et al.  Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications , 2000 .

[105]  Colin M. Wilson,et al.  Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors , 2009, Journal of Translational Medicine.

[106]  M. Hawthorne,et al.  Characterization of a boron neutron capture therapy beam line at the University of Missouri Research Reactor , 2009 .

[107]  W. Weiss,et al.  RNA interference against a glioma-derived allele of EGFR induces blockade at G2M , 2005, Oncogene.

[108]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[109]  R. Puri,et al.  The interleukin-13 receptor alpha2 chain: an essential component for binding and internalization but not for interleukin-13-induced signal transduction through the STAT6 pathway. , 2001, Blood.

[110]  S. Eastman,et al.  Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience , 2009, Journal of Neuro-Oncology.

[111]  C. James,et al.  Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[112]  C. Sawyers,et al.  The phosphatidylinositol 3-Kinase–AKT pathway in human cancer , 2002, Nature Reviews Cancer.

[113]  Lihong V. Wang,et al.  Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.

[114]  M. Caligiuri,et al.  Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. , 2002, Cancer research.

[115]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[116]  P. Humphrey,et al.  Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[117]  B. Fisher,et al.  Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. , 1992, International journal of radiation oncology, biology, physics.

[118]  Raoul Kopelman,et al.  Targeted gold nanoparticles enable molecular CT imaging of cancer. , 2008, Nano letters.

[119]  Sung Ho Ryu,et al.  A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer , 2010, Journal of Nuclear Medicine.

[120]  Lihong V. Wang,et al.  Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain , 2004 .

[121]  R. Gonzalez,et al.  A nanostructured titania bioceramic implantable device capable of drug delivery to the temporal lobe of the brain , 2007 .

[122]  G. Ren,et al.  A review of nanoparticle functionality and toxicity on the central nervous system , 2010, Journal of The Royal Society Interface.

[123]  Zhiyu Jiang,et al.  Photokilling cancer cells using highly cell-specific antibody-TiO(2) bioconjugates and electroporation. , 2007, Bioelectrochemistry.

[124]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[125]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[126]  Francis C Szoka,et al.  Designing dendrimers for biological applications , 2005, Nature Biotechnology.

[127]  John J. Schlager,et al.  Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical Challenges , 2009 .

[128]  Sophie Laurent,et al.  Classification and basic properties of contrast agents for magnetic resonance imaging. , 2009, Contrast media & molecular imaging.

[129]  A. Fujishima,et al.  Intracellular Ca2+ concentration change of T24 cell under irradiation in the presence of TiO2 ultrafine particles. , 1994, Biochimica et biophysica acta.

[130]  I. Sivaev,et al.  Polyhedral Boranes for Medical Applications: Current Status and Perspectives , 2009 .

[131]  Jon Dobson,et al.  Remote control of cellular behaviour with magnetic nanoparticles. , 2008, Nature nanotechnology.

[132]  G. Dai,et al.  Novel membrane‐permeable contrast agent for brain tumor detection by MRI , 2010, Magnetic resonance in medicine.

[133]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[134]  J. Macák,et al.  TiO2 nanotubes: photocatalyst for cancer cell killing , 2008 .

[135]  Younan Xia,et al.  Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications , 2010, Advanced functional materials.

[136]  W. Kaim,et al.  Multidimensional potential of boron-containing molecules in functional materials , 2010 .

[137]  B. Roizman,et al.  Engineered herpes simplex virus 1 is dependent on IL13Rα2 receptor for cell entry and independent of glycoprotein D receptor interaction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Eric C. Holland,et al.  Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma , 2010, Nature Reviews Cancer.

[139]  H. Maeda,et al.  The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century , 2005 .

[140]  T. Tzeng,et al.  The Antibacterial Effects of Biphasic Brookite-Anatase Titanium Dioxide Nanoparticles on Multiple-Drug-Resistant Staphylococcus aureus , 2008 .

[141]  P F Morrison,et al.  Convection-enhanced delivery of macromolecules in the brain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[142]  P. Sharp,et al.  Functional Delivery of siRNA in Mice Using Dendriworms , 2009, ACS nano.

[143]  Z. Ram,et al.  Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring. , 2008, Neuro-oncology.

[144]  B. Tavitian,et al.  Differential SELEX in Human Glioma Cell Lines , 2009, PloS one.

[145]  J. Benoit,et al.  In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy , 2010, Journal of Neuro-Oncology.

[146]  Valentyn Novosad,et al.  Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. , 2010, Nature materials.

[147]  G. Zabow,et al.  The fabrication of uniform cylindrical nanoshells and their use as spectrally tunable MRI contrast agents , 2009, Nanotechnology.