Fractals in biology and medicine

Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.

[1]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[2]  R. Mantegna,et al.  Fractals in biology and medicine. , 1995, Chaos, solitons, and fractals.

[3]  A. Goldberger,et al.  Finite-size effects on long-range correlations: implications for analyzing DNA sequences. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Bradley S. Turner,et al.  Viscous fingering of HCI through gastric mucin , 1992, Nature.

[5]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[6]  D Larhammar,et al.  Biological origins of long-range correlations and compositional variations in DNA. , 1993, Nucleic acids research.

[7]  Hiroshi Fujikawa,et al.  Diffusion-limited growth in bacterial colony formation , 1990 .

[8]  T. Matsuyama,et al.  Fractal spreading growth of Serratia marcescens which produces surface active exolipids. , 1989, FEMS microbiology letters.

[9]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[10]  Paul Meakin,et al.  Growth Patterns in Physical Sciences and Biology , 1993 .

[11]  H. E. Stanley,et al.  Effect of viscosity on neurite outgrowth and fractal dimension , 1992, Neuroscience Letters.

[12]  Universality classes for diffusion in the presence of correlated spatial disorder. , 1989, Physical review. A, General physics.

[13]  B. Masters,et al.  Fractal pattern formation in human retinal vessels , 1989 .

[14]  J. Maddox Humbling of world's AIDS researchers , 1992, Nature.

[15]  Noisy nucleotides. DNA sequences show fractal correlations. , 1992, Scientific American.

[16]  R. Kautz,et al.  Fluorescence lifetime studies with staphylococcal nuclease and its site-directed mutant. Test of the hypothesis that proline isomerism is the basis for nonexponential decays. , 1989, Biophysical journal.

[17]  Skolnick,et al.  Global fractal dimension of human DNA sequences treated as pseudorandom walks. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  H. Stanley,et al.  Territory covered by N diffusing particles , 1992, Nature.

[19]  Shlomo Havlin,et al.  Crumpled globule model of the three-dimensional structure of DNA , 1993 .

[20]  R. Britten,et al.  Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Nee,et al.  Uncorrelated DNA walks , 1992, Nature.

[22]  Wentian Li,et al.  GENERATING NONTRIVIAL LONG-RANGE CORRELATIONS AND 1/f SPECTRA BY REPLICATION AND MUTATION , 1992 .

[23]  Shengshi Li,et al.  A generalized theory for determining the field‐enhanced thermal emission rate by the reverse pulsed deep‐level transient spectroscopy , 1986 .

[24]  C. Peng,et al.  Fractal landscapes and molecular evolution: modeling the myosin heavy chain gene family. , 1993, Biophysical journal.

[25]  From Newton to Mandelbrot: A Primer in Theoretical Physics with Fractals for the Personal Computer , 1995 .

[26]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[27]  G. Weiss,et al.  Algebraically decaying noise in a system of particles with hard-core interactions , 1991 .

[28]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[29]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[30]  L. Brillouin,et al.  Science and information theory , 1956 .

[31]  R. Cohen,et al.  Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. , 1981, Science.

[32]  J. D. Cloizeaux,et al.  Short range correlation between elements of a long polymer in a good solvent , 1980 .

[33]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[34]  W. B. Marks,et al.  A fractal analysis of cell images , 1989, Journal of Neuroscience Methods.

[35]  Tamás Vicsek,et al.  Self-affine growth of bacterial colonies , 1990 .

[36]  T. Schopf Models in Paleobiology , 1972 .

[37]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[38]  R. Mantegna,et al.  Statistical mechanics in biology: how ubiquitous are long-range correlations? , 1994, Physica A.

[39]  Araujo,et al.  Diffusion of walkers with persistent velocities. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[40]  M. Sernetz,et al.  The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. , 1985, Journal of theoretical biology.

[41]  Eldred,et al.  Physical mechanisms underlying neurite outgrowth: A quantitative analysis of neuronal shape. , 1990, Physical review letters.

[42]  A L Goldberger,et al.  Generalized Lévy-walk model for DNA nucleotide sequences. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Eisenberg,et al.  Analyzing long-range correlations in finite sequences. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  R. Peters The Ecological Implications of Body Size , 1983 .

[45]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[46]  Simons,et al.  Long-range fractal correlations in DNA. , 1993, Physical Review Letters.

[47]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[48]  E. Ben-Jacob,et al.  Adaptive self-organization during growth of bacterial colonies , 1992 .

[49]  Shlomo Havlin,et al.  Fractals in Science , 1995 .

[50]  Manabu Takahashi,et al.  A fractal model of chromosomes and chromosomal DNA replication. , 1989, Journal of theoretical biology.

[51]  J. Lawton,et al.  Fractal dimension of vegetation and the distribution of arthropod body lengths , 1985, Nature.

[52]  Harry Eugene Stanley,et al.  Correlations and connectivity : geometric aspects of physics, chemistry, and biology , 1990 .

[53]  L. Liebovitch Testing fractal and Markov models of ion channel kinetics. , 1989, Biophysical journal.

[54]  E. Shakhnovich,et al.  The role of topological constraints in the kinetics of collapse of macromolecules , 1988 .

[55]  N. Tsuda,et al.  Multiphonon Exchange and the High-Tc Superconductivity of the Multilayer Oxide-Superconductor , 1989 .

[56]  Nadav M. Shnerb,et al.  LANGUAGE AND CODIFICATION DEPENDENCE OF LONG-RANGE CORRELATIONS IN TEXTS , 1994 .

[57]  Number of distinct sites visited by N particles diffusing on a fractal. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[58]  West,et al.  Complex fractal dimension of the bronchial tree. , 1991, Physical review letters.

[59]  E. Uberbacher,et al.  Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[60]  F. Zernike The propagation of order in co-operative phenomena: Part I. The AB case , 1940 .

[61]  T. Vicsek Fractal Growth Phenomena , 1989 .

[62]  R. R. Strathmann Testing size-abundance rules in a human exclusion experiment. , 1990, Science.

[63]  B. West Physiology in Fractal Dimensions , 1990 .

[64]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[65]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[66]  P. Koller Chromosome Structure and Function , 1972 .

[67]  M. Waterman Mathematical Methods for DNA Sequences , 1989 .

[68]  R. Voss,et al.  Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. , 1992, Physical review letters.

[69]  S Karlin,et al.  Patchiness and correlations in DNA sequences , 1993, Science.

[70]  Albert-László Barabási,et al.  Avalanches and power-law behaviour in lung inflation , 1994, Nature.

[71]  Schwartz,et al.  Structural and dynamical properties of long-range correlated percolation. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[72]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[73]  R. Schwartz,et al.  Intervening sequences in evolution and development , 1990 .

[74]  Bruce J. West,et al.  FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .

[75]  B. Dujon,et al.  The complete DNA sequence of yeast chromosome III , 1992, Nature.

[76]  H. Stanley,et al.  On growth and form : fractal and non-fractal patterns in physics , 1986 .

[77]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[78]  V. V. Prabhu,et al.  Correlations in intronless DNA , 1992, Nature.

[79]  Jeffrey M. Hausdorff,et al.  Fractal landscapes in biological systems: long-range correlations in DNA and interbeat heart intervals. , 1992, Physica A.

[80]  Directed-polymer and ballistic-deposition growth with correlated noise. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[81]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[82]  Friedberg Ck Computers in cardiology. , 1970 .

[83]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[84]  T. Musha,et al.  1/f Fluctuation of Heartbeat Period , 1982, IEEE Transactions on Biomedical Engineering.

[85]  E. Weibel,et al.  Architecture of the Human Lung , 1962, Science.

[86]  A L Goldberger,et al.  Correlation approach to identify coding regions in DNA sequences. , 1994, Biophysical journal.

[87]  P. Hagerman,et al.  Sequence-directed curvature of DNA. , 1986, Nature.

[88]  Stanley,et al.  Number of distinct sites visited by N random walkers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[89]  Sergey V. Buldyrev,et al.  Long-range power-law correlations in condensed matter physics and biophysics , 1993 .

[90]  J. Maddox Long-range correlations within DNA , 1992, Nature.

[91]  Michael F. Shlesinger,et al.  New paths for random walkers , 1992, Nature.

[92]  G. Church,et al.  Complementary recognition in condensed DNA: accelerated DNA renaturation. , 1991, Journal of molecular biology.

[93]  Diffusion in the presence of quenched random bias fields: A two-dimensional generalization of the Sinai model. , 1989, Physical review. A, General physics.

[94]  R. D. Pochy,et al.  Active walker models: tracks and landscapes , 1992 .

[95]  G. Weiss,et al.  Probability distribution of the interface width in surface roughening : analogy with a Lévy flight , 1991 .

[96]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[97]  Schwartz,et al.  Random multiplicative processes and transport in structures with correlated spatial disorder. , 1988, Physical review letters.

[98]  W. Gilbert Why genes in pieces? , 1978, Nature.

[99]  Jun Zhang,et al.  LONG RANGE CORRELATION IN HUMAN WRITINGS , 1993 .

[100]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[101]  Self-affine fractal growth front of Aspergillus oryzae , 1992 .

[102]  D. T. Kaplan,et al.  Dynamics of heart rate. , 1991, Chaos.

[103]  A L Goldberger,et al.  Fractal landscape analysis of DNA walks. , 1992, Physica.

[104]  I Amato,et al.  DNA shows unexplained patterns writ large. , 1992, Science.

[105]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Wentian Li,et al.  Long-range correlation and partial 1/fα spectrum in a noncoding DNA sequence , 1992 .

[107]  J. Wübbeke,et al.  Three-dimensional image analysis and fractal characterization of kidney arterial vessels , 1992 .

[108]  Richard I. Kitney,et al.  The Study of heart-rate variability , 1980 .

[109]  A. Biewener Biomechanics of mammalian terrestrial locomotion. , 1990, Science.

[110]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[111]  H. Stanley,et al.  FRACTAL LANDSCAPES IN BIOLOGICAL SYSTEMS , 1993 .

[112]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[113]  E. Ben-Jacob,et al.  Holotransformations of bacterial colonies and genome cybernetics , 1994 .

[114]  Anastasios A. Panagiotis A. Tsonis,et al.  Fractals: A New Look at Biological Shape and Patterning , 2015, Perspectives in biology and medicine.

[115]  N. Eldredge,et al.  Punctuated equilibrium comes of age , 1993, Nature.

[116]  Harry Eugene Stanley,et al.  Random fluctuations and pattern growth : experiments and models , 1988 .

[117]  C. A. Chatzidimitriou-Dreismann,et al.  Long-range correlations in DNA , 1993, Nature.

[118]  G. F. Joyce RNA evolution and the origins of life , 1989, Nature.

[119]  E. Shakhnovich,et al.  Implications of thermodynamics of protein folding for evolution of primary sequences , 1990, Nature.