Cavity-to-cavity interaction in nucleate boiling: The effect of heat conduction within the heater

This paper presents a numerical study aimed at analyzing bubble behavior as a function of site location. The effects of site distribution on the nucleate boiling curve are examined. Simple local-instantaneous models that mimic the bubble behavior on the boiling surface were implemented into a three-dimensional finite control volume conduction code. For a given site density, sample cases were run for uniform and nonuniform site distribution. The authors results indicate considerable deviation from linearized theories that always assume a uniform distribution. It is shown that bubble emission frequency is a strong function of site location. Consequently, the bubble flux density is shown to deviate from a simple periodic behavior with increasing nonuniformity in site distribution. This study further indicates that a uniform site distribution results in minimum area- and time-averaged surface superheat and minimum temperature variations on the boiling surface. As the distribution becomes less uniform, average surface temperature and surface temperature variations along the boiling surface increase. 19 refs., 14 figs., 2 tabs.