Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator

[1]  Xuemeng Hu,et al.  Acoustofluidics for simultaneous droplet transport and centrifugation facilitating ultrasensitive biomarker detection. , 2023, Lab on a chip.

[2]  A. Clayton,et al.  Dual-Wave Acoustofluidic Centrifuge for Ultrafast Concentration of Nanoparticles and Extracellular Vesicles. , 2023, Small.

[3]  A. Lal,et al.  Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation. , 2023, Lab on a chip.

[4]  I. Stiharu,et al.  A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods , 2023, Discover Nano.

[5]  D. Heath,et al.  3D Acoustofluidics via Sub‐Wavelength Micro‐Resonators , 2022, Advanced Functional Materials.

[6]  W. Pang,et al.  Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles , 2022, Science advances.

[7]  T. Huang,et al.  Acoustofluidics for biomedical applications , 2022, Nature Reviews Methods Primers.

[8]  T. Huang,et al.  Acoustofluidic black holes for multifunctional in-droplet particle manipulation , 2022, Science advances.

[9]  T. Huang,et al.  Harmonic acoustics for dynamic and selective particle manipulation , 2022, Nature Materials.

[10]  Tao Peng,et al.  Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets , 2022, Sensors.

[11]  D. Poulikakos,et al.  Focusing of Micrometer-Sized Metal Particles Enabled by Reduced Acoustic Streaming via Acoustic Forces in a Round Glass Capillary , 2022, Physical Review Applied.

[12]  A. Neild,et al.  The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices , 2022, Microfluidics and Nanofluidics.

[13]  L. Yeo,et al.  Acoustomicrofluidic Concentration and Signal Enhancement of Fluorescent Nanodiamond Sensors. , 2021, Analytical chemistry.

[14]  H. Torun,et al.  Acoustofluidic Patterning inside Capillary Tubes Using Standing Surface Acoustic Waves , 2021, International Journal of Mechanical Sciences.

[15]  E. Ng,et al.  Piezoelectric over Silicon-on-Nothing (pSON) process , 2021, 2021 IEEE International Ultrasonics Symposium (IUS).

[16]  Chengkuo Lee,et al.  Investigation of Localized Flexural Lamb Wave for Acoustofluidic Actuation and Particle Control , 2021, 2021 IEEE International Ultrasonics Symposium (IUS).

[17]  Ping Wang,et al.  Surface acoustic wave (SAW) techniques in tissue engineering , 2021, Cell and Tissue Research.

[18]  Aydogan Ozcan,et al.  Quantitative particle agglutination assay for point-of-care testing using mobile holographic imaging and deep learning. , 2021, Lab on a chip.

[19]  Hong Hu,et al.  Particle separation by standing surface acoustic waves inside a sessile droplet , 2021 .

[20]  L. Yeo,et al.  Acoustofection: High-Frequency Vibrational Membrane Permeabilization for Intracellular siRNA Delivery into Nonadherent Cells. , 2021, ACS applied bio materials.

[21]  T. Huang,et al.  Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae , 2021, Nature Communications.

[22]  H. Bruus,et al.  Theory of pressure acoustics with thermoviscous boundary layers and streaming in elastic cavities. , 2020, The Journal of the Acoustical Society of America.

[23]  Bruce W. Drinkwater,et al.  A Perspective on acoustical tweezers—devices, forces, and biomedical applications , 2020 .

[24]  T. Huang,et al.  Acoustofluidic multi-well plates for enrichment of micro/nano particles and cells. , 2020, Lab on a chip.

[25]  Y. Ai,et al.  Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells. , 2020, Lab on a chip.

[26]  A. Neild,et al.  Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing. , 2020, Lab on a chip.

[27]  L. Yeo,et al.  Submicron Particle and Cell Concentration in a Closed Chamber Surface Acoustic Wave Microcentrifuge. , 2020, Analytical chemistry.

[28]  Y. Ai,et al.  A deep learning approach for designed diffraction-based acoustic patterning in microchannels , 2020, Scientific Reports.

[29]  Tony Jun Huang,et al.  Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells , 2020, Proceedings of the National Academy of Sciences.

[30]  S. Dong,et al.  Acoustofluidics along inclined surfaces based on AlN/Si Rayleigh surface acoustic waves , 2020, Sensors and Actuators A: Physical.

[31]  J. Dual,et al.  Acoustic streaming produced by sharp-edge structures in microfluidic devices , 2020 .

[32]  Lingyu Yu,et al.  Low-frequency flexural wave based microparticle manipulation. , 2020, Lab on a chip.

[33]  O. Matar,et al.  Spatially selective manipulation of cells with single-beam acoustical tweezers , 2020, Nature Communications.

[34]  Peer Fischer,et al.  Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel , 2019, Advanced materials.

[35]  H. Sung,et al.  Acoustomicrofluidic separation of tardigrades from raw cultures for sample preparation , 2019, Zoological Journal of the Linnean Society.

[36]  O. Solgaard,et al.  Extended Design Space of Silicon-on-Nothing MEMS , 2019, Journal of Microelectromechanical Systems.

[37]  L. Yeo,et al.  Aggregation of a dense suspension of particles in a microwell using surface acoustic wave microcentrifugation , 2019, Microfluidics and Nanofluidics.

[38]  T. Huang,et al.  Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. , 2019, Lab on a chip.

[39]  H. Bruus,et al.  3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer , 2019, AIMS Mathematics.

[40]  Bruce W. Drinkwater,et al.  Holographic acoustic tweezers , 2018, Proceedings of the National Academy of Sciences.

[41]  Junhui Hu,et al.  Parallel Label‐Free Isolation of Cancer Cells Using Arrays of Acoustic Microstreaming Traps , 2018, Advanced Materials Technologies.

[42]  Henrik Bruus,et al.  Whole-System Ultrasound Resonances as the Basis for Acoustophoresis in All-Polymer Microfluidic Devices , 2018, Physical Review Applied.

[43]  L. Yeo,et al.  Acoustically-mediated intracellular delivery. , 2018, Nanoscale.

[44]  Lynn Paterson,et al.  Single Cell Isolation Using Optical Tweezers , 2018, Micromachines.

[45]  Peng Li,et al.  A sharp-edge-based acoustofluidic chemical signal generator. , 2018, Lab on a chip.

[46]  H. Bruus,et al.  Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities. , 2018, The Journal of the Acoustical Society of America.

[47]  M. Hoyos,et al.  Induced clustering of Escherichia coli by acoustic fields , 2018, Scientific Reports.

[48]  A. Neild,et al.  Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides. , 2018, Physical review letters.

[49]  Subra Suresh,et al.  Isolation of exosomes from whole blood by integrating acoustics and microfluidics , 2017, Proceedings of the National Academy of Sciences.

[50]  Junjun Lei Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces , 2017, Microfluidics and Nanofluidics.

[51]  L. Yeo,et al.  Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation. , 2016, ACS biomaterials science & engineering.

[52]  Fabrice Casset,et al.  Chladni Patterns in a Liquid at Microscale. , 2016, Physical review letters.

[53]  Francesco Costanzo,et al.  Investigation of micromixing by acoustically oscillated sharp-edges. , 2016, Biomicrofluidics.

[54]  Jin Ho Jung,et al.  Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. , 2016, Lab on a chip.

[55]  Henrik Bruus,et al.  Forces acting on a small particle in an acoustical field in a thermoviscous fluid. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Lin Wang,et al.  A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. , 2014, Lab on a chip.

[57]  Francesco Costanzo,et al.  Investigation of acoustic streaming patterns around oscillating sharp edges. , 2014, Lab on a chip.

[58]  Tony Jun Huang,et al.  An acoustofluidic micromixer based on oscillating sidewall sharp-edges. , 2013, Lab on a chip.

[59]  Henrik Bruus,et al.  A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. , 2012, Lab on a chip.

[60]  Thomas Laurell,et al.  Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. , 2012, Lab on a chip.

[61]  H. Bruus Acoustofluidics 2: perturbation theory and ultrasound resonance modes. , 2012, Lab on a chip.

[62]  H. Bruus,et al.  Forces acting on a small particle in an acoustical field in a viscous fluid. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[64]  Yong Qing Fu,et al.  Microfluidic pumps employing surface acoustic waves generated in ZnO thin films , 2009 .

[65]  T. Laurell,et al.  Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. , 2007, Analytical chemistry.

[66]  M. Hegner,et al.  Chladni figures revisited based on nanomechanics. , 2007, Physical review letters.

[67]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[68]  Jay W. Grate,et al.  Microsphere capture and perfusion in microchannels using flexural plate wave structures , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[69]  Ichiro Mizushima,et al.  Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure , 2000 .

[70]  J. Keasling,et al.  Ultrasonic flexural-plate-wave sensor for detecting the concentration of settling E. coli W3110 cells. , 1999, Analytical chemistry.

[71]  Richard M. White,et al.  Cell growth assay using the ultrasonic flexural plate-wave device , 1997, Photonics West - Biomedical Optics.

[72]  S. Wenzel,et al.  Viscosity sensing with lamb-wave microsensor: dimethylsulfoxide solution viscosity as a function of temperature. , 1993, Journal of biomechanical engineering.

[73]  R. Moroney,et al.  Electrochemical detection of localized mixing produced by ultrasonic flexural waves , 1991, IEEE 1991 Ultrasonics Symposium,.

[74]  Roger T. Howe,et al.  Microtransport induced by ultrasonic Lamb waves , 1991 .

[75]  Richard M. White,et al.  Flexural Plate Wave Devices for Chemical Analysis , 1991 .

[76]  Roger T. Howe,et al.  Fluid motion produced by ultrasonic Lamb waves , 1990, IEEE Symposium on Ultrasonics.

[77]  Richard M. White,et al.  Viscosity and density sensing with ultrasonic plate waves , 1990 .

[78]  Richard M. White,et al.  Flexural plate-wave gravimetric chemical sensor , 1990 .

[79]  Richard M. White,et al.  Flexural plate-wave sensor: chemical vapor sensing and electrostrictive excitation , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[80]  Allan D. Pierce,et al.  Acoustics , 1989 .

[81]  Richard M. White,et al.  Silicon-based ultrasonic Lamb-wave multisensors , 1988, IEEE Technical Digest on Solid-State Sensor and Actuator Workshop.

[82]  Richard M. White,et al.  A multisensor employing an ultrasonic Lamb-wave oscillator , 1988 .

[83]  Richard M. White,et al.  Fluid loading of a Lamb‐wave sensor , 1988 .

[84]  Yong Qing Fu,et al.  Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate , 2010 .

[85]  Nam-Trung Nguyen,et al.  Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[86]  Roger T. Howe,et al.  Ultrasonic micromotors , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[87]  R.M. White,et al.  Plate-Mode Ultrasonic Oscillator Sensors , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.