A FEM for an optimal control problem subject to the fractional Laplace equation

We study the numerical approximation of linear-quadratic optimal control problems subject to the fractional Laplace equation with its spectral definition. We compute an approximation of the state equation using a discretization of the Balakrishnan formula that is based on a finite element discretization in space and a sinc quadrature approximation of the additionally involved integral. A tailored approach for the numerical solution of the resulting linear systems is proposed. Concerning the discretization of the optimal control problem we consider two schemes. The first one is the variational approach, where the control set is not discretized, and the second one is the fully discrete scheme where the control is discretized by piecewise constant functions. We derive finite element error estimates for both methods and illustrate our results by numerical experiments.

[1]  Ricardo H. Nochetto,et al.  Numerical methods for fractional diffusion , 2017, Comput. Vis. Sci..

[2]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[3]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[4]  Luca Gerardo-Giorda,et al.  Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions , 2017, SIAM J. Numer. Anal..

[5]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[6]  Ricardo H. Nochetto,et al.  A PDE Approach to Space-Time Fractional Parabolic Problems , 2014, SIAM J. Numer. Anal..

[7]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[8]  Harbir Antil,et al.  Fractional Operators with Inhomogeneous Boundary Conditions: Analysis, Control, and Discretization , 2017, 1703.05256.

[9]  Louis Dupaigne,et al.  Nonhomogeneous boundary conditions for the spectral fractional Laplacian , 2015, 1509.06275.

[10]  Xian-Ming Gu,et al.  A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems , 2017, Comput. Math. Appl..

[11]  Christian A. Glusa,et al.  Optimal control of a parabolic fractional PDE: analysis and discretization , 2019, 1905.10002.

[12]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[13]  Enrique Otarola,et al.  A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains , 2015, 1508.02807.

[14]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[15]  Joseph E. Pasciak,et al.  Numerical Approximation of Fractional Powers of Regularly Accretive Operators , 2015, 1508.05869.

[16]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[17]  Arnd Rösch,et al.  Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..

[18]  Joseph E. Pasciak,et al.  On sinc quadrature approximations of fractional powers of regularly accretive operators , 2017, J. Num. Math..

[19]  Michael K. Ng,et al.  Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..

[20]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[21]  Andreas Frommer,et al.  BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.

[22]  Y. Meyer,et al.  Fonctions qui opèrent sur les espaces de Sobolev , 1991 .

[23]  Kirk M. Soodhalter Two recursive GMRES-type methods for shifted linear systems with general preconditioning , 2014, ArXiv.

[24]  A. Nazarov,et al.  A note on truncations in fractional Sobolev spaces , 2017, Bulletin of Mathematical Sciences.

[25]  Harbir Antil,et al.  A FEM for an Optimal Control Problem of Fractional Powers of Elliptic Operators , 2014, SIAM J. Control. Optim..

[26]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[27]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[28]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[29]  Fei Xue,et al.  Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.

[30]  Ricardo H. Nochetto,et al.  Tensor FEM for Spectral Fractional Diffusion , 2017, Foundations of Computational Mathematics.

[31]  Andreas Frommer,et al.  Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..

[32]  Arnd Rösch,et al.  Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..

[33]  Harbir Antil,et al.  External optimal control of nonlocal PDEs , 2018, Inverse Problems.

[34]  Harbir Antil,et al.  Optimal control of fractional semilinear PDEs , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[35]  Boris Vexler,et al.  hp-Finite Elements for Fractional Diffusion , 2017, SIAM J. Numer. Anal..

[36]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[37]  Enrique Otárola,et al.  A Priori Error Estimates for the Optimal Control of the Integral Fractional Laplacian , 2019, SIAM J. Control. Optim..

[38]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[39]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[40]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .