Efficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes

The goal of this paper is to investigate and develop fast and robust solution techniques for high-order accurate Discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured meshes. Previous work was focused on the development of hp-multigrid techniques for inviscid flows and the current work concentrates on the extension of these solvers to steady-state viscous flows including the effects of highly anisotropic hybrid meshes. Efficiency and robustness are improved through the use of mixed triangular and quadrilateral mesh elements, the formulation of local order-reduction techniques, the development of a line-implicit Jacobi smoother, and the implementation of a Newton-GMRES solution technique. The methodology is developed for the twoand three-dimensional Navier-Stokes equations on unstructured anisotropic grids, using linear multigrid schemes. Results are presented for a flat plate boundary layer and for flow over a NACA0012 airfoil and a two-element airfoil. Current results demonstrate convergence rates which are independent of the degree of mesh anisotropy, order of accuracy (p) of the discretization and level of mesh resolution (h). Additionally, preliminary results of on-going work for the extension to the Reynolds Averaged Navier-Stokes(RANS) equations and the extension to three dimensions are given.

[1]  Edward N. Tinoco,et al.  Summary of the Fourth AIAA CFD Drag Prediction Workshop , 2010 .

[2]  Dimitri J. Mavriplis,et al.  High-Order Discontinuous Galerkin Methods using a Spectral Multigrid Approach , 2005 .

[3]  George Em Karniadakis,et al.  Galerkin and discontinuous Galerkin spectral/hp methods , 1999 .

[4]  Antony Jameson,et al.  An accurate LED-BGK solver on unstructured adaptive meshes (Local Extremum Diminishing interpolation) , 1997 .

[5]  D. A. Dunavant Economical symmetrical quadrature rules for complete polynomials over a square domain , 1985 .

[6]  David L. Darmofal,et al.  Shock Capturing with Higher-Order, PDE-Based Artificial Viscosity , 2007 .

[7]  Dimitri J. Mavriplis,et al.  Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[8]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[9]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[10]  D. C. Wilcox,et al.  Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976 , 1976 .

[11]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[12]  Michael A. Leschziner,et al.  Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows , 1997 .

[13]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[14]  Per-Olof Persson,et al.  Curved mesh generation and mesh refinement using Lagrangian solid mechanics , 2008 .

[15]  Jan Sokolowski,et al.  Compressible Navier-Stokes equations , 2012 .

[16]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[17]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[18]  Todd A. Oliver A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .

[19]  Dimitri J. Mavriplis,et al.  A Parallel hp-Multigrid Solver for Three-Dimensional Discontinuous Galerkin Discretizations of the Euler Equations , 2007 .

[20]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[21]  David L. Darmofal,et al.  Impact of Turbulence Model Irregularity on High-Order Discretizations , 2009 .

[22]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[23]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[24]  Dimitri J. Mavriplis,et al.  Implicit Solution of the Unsteady Euler Equations for High-Order Accurate Discontinuous Galerkin Discretizations , 2006 .

[25]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[26]  Dimitri J. Mavriplis,et al.  Directional agglomeration multigrid techniques for high Reynolds number viscous flow solvers , 1998 .

[27]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[28]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[29]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[30]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[31]  Dimitri J. Mavriplis,et al.  MULTIGRID TECHNIQUES FOR UNSTRUCTURED MESHES , 1995 .

[32]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[33]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[34]  Edward N. Tinoco,et al.  Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .

[35]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[36]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[37]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[38]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[39]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[40]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[41]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .