The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications

We consider the class USk of uniformly k-sparse simple graphs, i.e., the class of finite or countable simple graphs, every finite subgraph of which has a number of edges bounded by k times the number of vertices. We prove that for each k, every monadic second-order formula (intended to express a graph property) that uses variables denoting sets of edges can be effectively translated into a monadic second-order formula where all set variables denote sets of vertices and that expresses the same property of the graphs in USk. This result extends to the class of uniformly k-sparse simple hypergraphs of rank at most m (for any k and m).It follows that every subclass of USk consisting of finite graphs of bounded clique-width has bounded tree-width. Clique-width is a graph complexity measure similar to tree-width and relevant to the construction of polynomial algorithms for NP-complete problems on special classes of graphs.

[1]  Bruno Courcelle,et al.  A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars , 1995, Math. Syst. Theory.

[2]  Ronald Fagin,et al.  The closure of Monadic NP (extended abstract) , 1998, STOC '98.

[3]  Joost Engelfriet,et al.  Regular Description of Context-Free Graph Languages , 1996, J. Comput. Syst. Sci..

[4]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[5]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[6]  Ronald Fagin,et al.  The Closure of Monadic NP , 2000, J. Comput. Syst. Sci..

[7]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[8]  Bruno Courcelle,et al.  The Monadic Second-order Logic of Graphs VI: On Several Representations of Graphs by Relational Structures , 1995, Discret. Appl. Math..

[9]  András Frank,et al.  Connectivity and network flows , 1996 .

[10]  B. Courcellea,et al.  On the xed parameter complexity of graph enumeration problems de nable in monadic second-order logic , 2000 .

[11]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[12]  Joost Engelfriet,et al.  Logical Description of Contex-Free Graph Languages , 1997, J. Comput. Syst. Sci..

[13]  Eric Sopena,et al.  $T$-preserving homomorphisms of oriented graphs , 1997 .

[14]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[15]  Detlef Seese,et al.  The Structure of Models of Decidable Monadic Theories of Graphs , 1991, Ann. Pure Appl. Log..

[16]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[17]  Udi Rotics,et al.  Polynomial Time Recognition of Clique-Width \le \leq 3 Graphs (Extended Abstract) , 2000, Latin American Symposium on Theoretical Informatics.

[18]  Bruno Courcelle Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement , 1995, Inf. Comput..

[19]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[20]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[21]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[22]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[23]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[24]  Oliver Matz First-Order Closure and the Monadic Second-Order Alternation Hierarchy , 1998 .

[25]  Bruno Courcelle,et al.  Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..

[26]  Bruno Courcelle,et al.  Monadic Second-Order Graph Transductions , 1992, CAAP.

[27]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[28]  Neil Immerman Languages which capture complexity classes , 1983, STOC '83.

[29]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[30]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..