A universal scaling of planar fault energy barriers in face-centered cubic metals

Minimum energy paths for generating intrinsic, extrinsic and twin planar faults were calculated for a number of face-centered cubic (fcc) metals via ab initio techniques. It is found that when the lattice is faulted sequentially, the interaction with the existing fault tends to remain minimal for nearly all the fcc metals. Accordingly, a universal scaling law may be deduced based on a single parameter, namely the ratio between the intrinsic stacking fault energy and the relevant energy barrier.

[1]  Y. Mishin,et al.  Atomistic modeling of interfaces and their impact on microstructure and properties , 2010 .

[2]  N. Bernstein,et al.  Tight-binding calculations of stacking energies and twinnability in fcc metals , 2004 .

[3]  K. Lu,et al.  Tensile properties of copper with nano-scale twins , 2005 .

[4]  Horst Hahn,et al.  Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals , 2008 .

[5]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[6]  Ellad B. Tadmor,et al.  A Peierls criterion for the onset of deformation twinning at a crack tip , 2003 .

[7]  Solute/defect-mediated pathway for rapid nanoprecipitation in solid solutions: γ surface analysis in fcc Al-Ag , 2006 .

[8]  Horst Hahn,et al.  The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals , 2006 .

[9]  Noam Bernstein,et al.  A first-principles measure for the twinnability of FCC metals , 2004 .

[10]  Ting Zhu,et al.  Ultra-strength materials , 2010 .

[11]  G. Wilde,et al.  HRTEM observation of interfacial dislocations at faceted Al–Pb interfaces , 2004 .

[12]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[13]  M. Nastasi,et al.  Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films , 2004 .

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[16]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[17]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[18]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[19]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[22]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[23]  Shaoxing Qu,et al.  Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. , 2007 .

[24]  J. Hafner,et al.  Shear deformation, ideal strength, and stacking fault formation of fcc metals: A density-functional study of Al and Cu , 2009 .

[25]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[26]  D. Roundy,et al.  Ideal Shear Strengths of fcc Aluminum and Copper , 1999 .

[27]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[28]  H. Van Swygenhoven,et al.  Stacking fault energies and slip in nanocrystalline metals , 2004, Nature materials.

[29]  Peter M. Derlet,et al.  The influence of twins on the mechanical properties of nc-Al , 2004 .

[30]  J. Venables Deformation twinning in face-centred cubic metals , 1961 .

[31]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[32]  Xiaolei Wu,et al.  Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni , 2006 .

[33]  Sidney Yip,et al.  Energy landscape of deformation twinning in bcc and fcc metals , 2005 .

[34]  Yunzhi Wang,et al.  Phase field modeling of defects and deformation , 2010 .

[35]  S. Kalidindi,et al.  Influence of grain size and stacking-fault energy on deformation twinning in fcc metals , 1999 .

[36]  S. Suresh,et al.  Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins , 2005 .

[37]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[38]  Metall , 1897 .

[39]  Donald J. Siegel Generalized stacking fault energies, ductilities, and twinnabilities of Ni and selected Ni alloys , 2005 .

[40]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[41]  S. Papson,et al.  “Model” , 1981 .

[42]  P. Gumbsch,et al.  A quantum mechanical calculation of the theoretical strength of metals , 1991 .

[43]  S. G. Srinivasan,et al.  Deformation twinning in nanocrystalline copper at room temperature and low strain rate , 2004 .

[44]  J. Markmann,et al.  Deformation twinning in nanocrystalline Pd , 2004 .

[45]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[46]  Huseyin Sehitoglu,et al.  Generalized planar fault energies and twinning in Cu–Al alloys , 2006 .

[47]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[48]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[49]  Huajian Gao,et al.  Generalized stacking fault energies for embedded atom FCC metals , 2000 .