Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques

We consider the following general correlation-clustering problem [1]: given a graph with real edge weights (both positive and negative), partition the vertices into clusters to minimize the total absolute weight of cut positive edges and uncut negative edges. Thus, large positive weights (representing strong correlations between endpoints) encourage those endpoints to belong to a common cluster; large negative weights encourage the endpoints to belong to different clusters; and weights with small absolute value represent little information. In contrast to most clustering problems, correlation clustering specifies neither the desired number of clusters nor a distance threshold for clustering; both of these parameters are effectively chosen to be the best possible by the problem definition.

[1]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computations , 1990, STOC '90.

[2]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[3]  Vijay V. Vazirani,et al.  Primal-dual approximation algorithms for metric facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[4]  Éva Tardos,et al.  Improved Bounds for the Max-Flow Min-Multicut Ratio for Planar and K_r, r-Free Graphs , 1993, Inf. Process. Lett..

[5]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[7]  Ashish Goel,et al.  Source routing and scheduling in packet networks , 2005, JACM.

[8]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[9]  Miroslav Chlebík,et al.  Approximation Hardness for Small Occurrence Instances of NP-Hard Problems , 2003, CIAC.

[10]  Mihalis Yannakakis,et al.  Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications , 1996, SIAM J. Comput..

[11]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[13]  Dimitris Bertsimas,et al.  From fluid relaxations to practical algorithms for job shop scheduling: the makespan objective , 2002, Math. Program..

[14]  Mihalis Yannakakis,et al.  The complexity of multiway cuts (extended abstract) , 1992, STOC '92.

[15]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[16]  Mihalis Yannakakis,et al.  Cutting and Partitioning a Graph aifter a Fixed Pattern (Extended Abstract) , 1983, ICALP.

[17]  Amos Fiat,et al.  Correlation Clustering - Minimizing Disagreements on Arbitrary Weighted Graphs , 2003, ESA.

[18]  Erez Petrank The hardness of approximation: Gap location , 2005, computational complexity.

[19]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[20]  Philip N. Klein,et al.  Excluded minors, network decomposition, and multicommodity flow , 1993, STOC.

[21]  Leonard J. Schulman,et al.  Clustering for Edge-Cost Minimization , 1999, Electron. Colloquium Comput. Complex..

[22]  Marina Meila,et al.  An Experimental Comparison of Several Clustering and Initialization Methods , 1998, UAI.

[23]  Marek Karpinski,et al.  Improved Approximation Lower Bounds on Small Occurrence Optimization , 2003, Electron. Colloquium Comput. Complex..

[24]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[25]  Christian Scheideler,et al.  Simple routing strategies for adversarial systems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[26]  S. Sevast’yanov Bounding algorithm for the routing problem with arbitrary paths and alternative servers , 1986 .

[27]  Venkatesan Guruswami,et al.  Clustering with qualitative information , 2005, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[28]  David Gamarnik,et al.  Stability of adaptive and non-adaptive packet routing policies in adversarial queueing networks , 1999, STOC '99.

[29]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[30]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[31]  Baruch Awerbuch,et al.  Universal stability results for greedy contention-resolution protocols , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[32]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[33]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[34]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1992, BIT Comput. Sci. Sect..

[35]  Allan Borodin,et al.  Adversarial queueing theory , 1996, STOC '96.

[36]  Nikhil Bansal,et al.  Correlation Clustering , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[37]  Richard M. Karp,et al.  Global wire routing in two-dimensional arrays , 1987, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[38]  Alexander Schrijver,et al.  On the Size of Systems of Sets Every t of Which Have an SDR, with an Application to the Worst-Case Ratio of Heuristics for Packing Problems , 1989, SIAM J. Discret. Math..

[39]  Rene L. Cruz,et al.  A calculus for network delay, Part II: Network analysis , 1991, IEEE Trans. Inf. Theory.

[40]  Rafail Ostrovsky,et al.  Adaptive packet routing for bursty adversarial traffic , 1998, STOC '98.

[41]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[42]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[43]  Baruch Awerbuch,et al.  Universal-stability results and performance bounds for greedy contention-resolution protocols , 2001, JACM.

[44]  Avi Wigderson,et al.  Improving the performance guarantee for approximate graph coloring , 1983, JACM.

[45]  Piotr Berman,et al.  Approximating maximum independent set in bounded degree graphs , 1994, SODA '94.

[46]  Apurva Kumar,et al.  Mobility modeling of rush hour traffic for location area design in cellular networks , 2000, WOWMOM '00.

[47]  Luca Trevisan,et al.  Streaming computation of combinatorial objects , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[48]  Hans-Peter Kriegel,et al.  Clustering for Mining in Large Spatial Databases , 1998, Künstliche Intell..

[49]  Miroslav Chlebík,et al.  Inapproximability Results for Bounded Variants of Optimization Problems , 2003, FCT.

[50]  Michael E. Saks Randomization and derandomization in space-bounded computation , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[51]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[52]  David B. Shmoys,et al.  A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.