Material growth, device design, and applications for uncooled LWIR HgCdTe detectors

The present generation of uncooled infrared photon detectors relies on complex heterostructures grown by low temperature epitaxial techniques. We report recent results on MOCVD grown Hg1-xCdxTe photodetectors and their applications. Special modifications to the interdiffused multilayer process (IMP) has been applied for the in-situ control of stoichiometry, improved morphology and minimized consumption of precursors. As a result we are able to grow fully-doped multiple layer heterostructures without any post-growth thermal anneal. The heterostructures have been used for fabrication of IR photodetectors optimized for any wavelength within the 1 to 15 μm range and operating at temperatures 200-300 K. Variable bandgap absorbers have been used for detectors with tuned spectral response and multicolor devices. The uncooled photodetectors have been applied in sub-ppb gas analyzers, laser warning devices, free space optical communications, Fourier Transform IR Spectroscopy, and many other IR systems.

[1]  J. Piotrowski,et al.  Monolithic optically immersed HgCdTe IR detectors , 1989 .

[2]  J. Piotrowski,et al.  Uncooled infrared photodetectors in Poland , 2005, Optics + Optoelectronics.

[3]  Jozef Piotrowski,et al.  Near room-temperature IR photo-detectors , 1991 .

[4]  Neil T. Gordon,et al.  High-performance long-wavelength HgCdTe infrared detectors grownon silicon substrates , 2004 .

[5]  K. Jóźwikowski,et al.  Stacked multijunction photodetectors of long-wavelength radiation , 2003 .

[6]  A. Rogalski,et al.  MOCVD growth of Hg₁₋xCdxTe heterostructures for uncooled infrared photodetectors , 2004 .

[7]  J. Piotrowski,et al.  Improvements in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors , 2005, Optics + Optoelectronics.

[8]  Waldemar Gawron,et al.  Uncooled photovoltaic Hg1-xCdxTe LWIR detectors , 2000, SPIE Optics + Photonics.

[9]  Jozef Piotrowski,et al.  Infrared photodetector with electromagnetic carrier depletion , 1992 .

[10]  P. Norton HgCdTe Infrared Detectors , 2002 .

[11]  Manijeh Razeghi,et al.  Improved performance of IR photodetectors with 3D gap engineering , 1995, Photonics West.

[12]  Jozef Piotrowski,et al.  High capability, quasi-closed growth system for isothermal vapour phase epitaxy of (Hg, Cd)Te , 1988 .

[13]  Zenon Nowak,et al.  A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions , 1998 .

[14]  J. B. Mullin,et al.  The growth by MOVPE and characterisation of CdxHg1−xTe , 1981 .

[15]  J. Bajaj,et al.  A model of the interdiffused multilayer process , 1996 .

[16]  J. Piotrowski,et al.  Uncooled operation of IR photodetectors , 2004 .

[17]  Zenon Nowak,et al.  Isothermal vapor phase epitaxy as a versatile technology for infrared photodetectors , 1997, Photonics West.

[18]  Waldemar Gawron,et al.  Status of HgCdTe photodiodes at the Military University of Technology , 2003 .

[19]  J. B. Mullin,et al.  The growth of CdxHg1−xTe using organometallics , 1982 .

[20]  R. Triboulet,et al.  Substrate issues for the growth of mercury cadmium telluride , 1993 .

[21]  Zoran Djurić,et al.  Generalized model of the isothermal vapor phase epitaxy of (Hg,Cd)Te , 1987 .

[22]  C. R. Helms,et al.  Simulation of HgTe/CdTe interdiffusion using fundamental point defect mechanisms , 1998 .

[23]  Y. Marfaing,et al.  Transport of photocarriers in CdxHg1−xTe graded-gap structures☆ , 1968 .

[24]  Neil T. Gordon,et al.  Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range , 1999 .

[25]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[26]  Z. Djinovic,et al.  Composition and thickness control of CdxHg1-xTe layers grown by open tube isothermal vapour phase epitaxy , 1987 .

[27]  W. Gawron,et al.  Ultimate performance of infrared photodetectors and figure of merit of detector material , 1997 .

[28]  H. R. Vydyanath Mechanisms of incorporation of donor and acceptor dopants in (Hg,Cd)Te alloys , 1991 .