Optimal maximal encoding different from Huffman encoding

Novel maximal encoding, encoding, and maximal prefix encoding different from Huffman encoding are introduced. It is proven that for finite source alphabets all Huffman codes are optimal maximal codes, codes, and maximal prefix codes. Conversely, the above three types optimal codes need not to be the Huffman codes. Completely similar to Huffman codes, we prove that for every random variable with a countably infinite set of outcomes and with finite entropy there exists an optimal maximal code (code, maximal prefix code) which can be constructed from optimal maximal codes (codes, maximal prefix codes) for truncated versions of the random variable, and furthermore, that the average code word lengths of any sequence of optimal maximal codes (codes, maximal prefix codes) for the truncated versions converge to that of the optimal maximal code (cone, maximal prefix code).

[1]  J. Berstel,et al.  Theory of codes , 1985 .

[2]  Steven Roman Introduction to coding and information theory , 1997, Undergraduate texts in mathematics.

[3]  Ronald L. Rivest,et al.  On breaking a Huffman code , 1996, IEEE Trans. Inf. Theory.

[4]  Vahid Tarokh,et al.  Existence of optimal prefix codes for infinite source alphabets , 1997, IEEE Trans. Inf. Theory.

[5]  Ian H. Witten,et al.  Text Compression , 1990, 125 Problems in Text Algorithms.

[6]  Pierre A. Humblet,et al.  Optimal source coding for a class of integer alphabets (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[7]  Julia Abrahams,et al.  On the redundancy of optimal binary prefix-condition codes for finite and infinite sources , 1987, IEEE Trans. Inf. Theory.

[8]  Julia Abrahams Huffman-type codes for infinite source distributions , 1994 .

[9]  Gopal Lakhani,et al.  Improved Huffman code tables for JPEG's encoder , 1995, IEEE Trans. Circuits Syst. Video Technol..

[10]  Te Sun Han,et al.  Huffman coding with an infinite alphabet , 1996, IEEE Trans. Inf. Theory.

[11]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[12]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .