A BAYESIAN APPROACH TO ESTIMATING AND FORECASTING ADDITIVE NONPARAMETRIC AUTOREGRESSIVE MODELS

. We present a Bayesian approach for estimating nonparametrically an additive autoregressive model with the regression curve estimates cubic smoothing splines. Our approach is robust to innovation outliers; it can handle missing observations and produce multistep ahead forecasts. The computation is carried out using Markov chain Monte Carlo and requires O(nM) operations where n is the sample size and M is the number of Markov chain iterations. This makes it the first exact algorithm for spline smoothing of an additive autoregressive model which can handle large data sets. The properties of the estimates and forecasts are studied empirically using simulated and real data sets.

[1]  Howell Tong,et al.  Some Comments on the Canadian Lynx Data , 1977 .

[2]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[3]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .

[4]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[5]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[6]  T. Ozaki,et al.  Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model , 1981 .

[7]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[8]  D. Tjøstheim,et al.  Identification of nonlinear time series: First order characterization and order determination , 1990 .

[9]  P. Lewis,et al.  Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS) , 1991 .

[10]  Chong Gu,et al.  Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method , 1991, SIAM J. Sci. Comput..

[11]  A. Nicholson,et al.  The Self-Adjustment of Populations to Change , 1957 .

[12]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[13]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[14]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .

[15]  Robert Kohn,et al.  The Performance of Cross-Validation and Maximum Likelihood Estimators of Spline Smoothing Parameters , 1991 .

[16]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[17]  C. Elton,et al.  The Ten-Year Cycle in Numbers of the Lynx in Canada , 1942 .

[18]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .