Data Centric Transfer Functions for High Dynamic Range Volume Data

Creating effective transfer functions for high dynamic range scalar v olume data is a challenging task. For data sets with limited information about their content, deriving transfer functions using mathe matical properties (gradient, curvature, etc.) is a difficult trial and error process. Traditional methods use linear binning to map da t to integer space for creating the transfer functions. In current methods the transfer functions are typically stored in integer lo ok-up tables, which do not work well when the data range is large. We show how a process of opacity guidance with simple use r interface can be used as the basis for transfer function design. Our technique which uses opacity weighted histogram equ alization lets users derive transfer functions for HDR floating point easily and quickly. We also present how to adopt these te chniques for real-time interactive visualization with minimal pre-processing. We compare our techniques with traditional m ethods and show examples.

[1]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[2]  Wolfgang Heidrich,et al.  Volume rendering for high dynamic range displays , 2005, Fourth International Workshop on Volume Graphics, 2005..

[3]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[4]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[5]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[6]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[7]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[8]  P. Maechling,et al.  Strong shaking in Los Angeles expected from southern San Andreas earthquake , 2006 .

[9]  M. Norman,et al.  High Resolution Simulations of Supersonic Turbulence in Molecular Clouds , 2006, astro-ph/0607634.

[10]  Kwan-Liu Ma,et al.  A cluster-space visual interface for arbitrary dimensional classification of volume data , 2004, VISSYM'04.

[11]  Anders Ynnerman,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2006) the Α-histogram: Using Spatial Coherence to Enhance Histograms and Transfer Function Design , 2022 .

[12]  G. Kindlmann,et al.  Semi-automatic generation of transfer functions for direct volume rendering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[13]  Xiaoru Yuan,et al.  High dynamic range volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[14]  Torsten Möller,et al.  Transfer Functions on a Logarithmic Scale for Volume Rendering , 2004, Graphics Interface.