High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

[1]  Soogab Leea,et al.  Flow-induced vein-wall vibration in an arteriovenous graft , 2004 .

[2]  D. Nichols,et al.  Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment , 2003, The Lancet.

[3]  P. Weinberg,et al.  Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. , 2007, Journal of biomechanics.

[4]  David A. Steinman,et al.  Automatic Neck Plane Detection and 3D Geometric Characterization of Aneurysmal Sacs , 2012, Annals of Biomedical Engineering.

[5]  R. Spetzler,et al.  Surgical Approaches to Intramedullary Cavernous Malformations of the Spinal Cord , 2011, Neurosurgery.

[6]  J. Mocco,et al.  Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model , 2010, Stroke.

[7]  D. Holdsworth,et al.  PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. , 2008, Journal of biomechanical engineering.

[8]  Jia Lu,et al.  Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification. , 2011, Journal of biomechanical engineering.

[9]  Bu-Lang Gao,et al.  Identification of a dichotomy in morphological predictors of rupture status between sidewall- and bifurcation-type intracranial aneurysms. , 2012, Journal of neurosurgery.

[10]  M. Zamir,et al.  The Physics of Pulsatile Flow , 2000, Biological Physics Series.

[11]  F. Mut,et al.  Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture , 2011, American Journal of Neuroradiology.

[12]  Hui Meng,et al.  High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment , 2011, Annals of Biomedical Engineering.

[13]  G. Ferguson Turbulence in human intracranial saccular aneurysms. , 1970, Journal of neurosurgery.

[14]  G. Ferguson,et al.  The Hemodynamic Importance of the Geometry of Bifurcations in the Circle of Willis (Glass Model Studies) , 1972, Stroke.

[15]  H. Steiger,et al.  Low frequency flow fluctuations in saccular aneurysms , 2005, Acta Neurochirurgica.

[16]  Robert J. Lutz,et al.  The onset of turbulence in physiological pulsatile flow in a straight tube , 1998 .

[17]  E. Melhem,et al.  Age and Sex Variability and Normal Reference Values for the VMCA/VICA Index , 2005 .

[18]  J. Mocco,et al.  Hemodynamic–Morphologic Discriminants for Intracranial Aneurysm Rupture , 2011, Stroke.

[19]  L. Jou,et al.  Wall Shear Stress on Ruptured and Unruptured Intracranial Aneurysms at the Internal Carotid Artery , 2008, American Journal of Neuroradiology.

[20]  Alvaro Valencia,et al.  Simulation of unsteady laminar flow in models of terminal aneurysm of the basilar artery , 2005 .

[21]  D F Kallmes,et al.  Comparison of 2D Digital Subtraction Angiography and 3D Rotational Angiography in the Evaluation of Dome-to-Neck Ratio , 2009, American Journal of Neuroradiology.

[22]  H. Langtangen,et al.  Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. , 2011, Journal of biomechanics.

[23]  M. Stanišić,et al.  Onset of Turbulence , 1985 .

[24]  Christof Karmonik,et al.  Aneurysm Volume-to-Ostium Area Ratio: A Parameter Useful for Discriminating the Rupture Status of Intracranial Aneurysms , 2011, Neurosurgery.

[25]  K. Katada,et al.  Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms , 2004, Stroke.

[26]  W. Stehbens Flow in glass models of arterial bifurcations and berry aneurysms at low Reynolds numbers. , 1975, Quarterly journal of experimental physiology and cognate medical sciences.

[27]  L. Antiga,et al.  Rethinking turbulence in blood. , 2009, Biorheology.

[28]  Elias R Melhem,et al.  Age and sex variability and normal reference values for the V(MCA)/V(ICA) index. , 2005, AJNR. American journal of neuroradiology.

[29]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[30]  R. M. Nerem,et al.  Turbulence in pulsatile flows , 2006, Annals of Biomedical Engineering.

[31]  S. Sherwin,et al.  Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. , 2007, Journal of biomechanics.

[32]  G E Karniadakis,et al.  Flow instability and wall shear stress variation in intracranial aneurysms , 2010, Journal of The Royal Society Interface.

[33]  R. Macdonald Editorial: on the persisting difficulty of making predictions, especially about the future. , 2012, Journal of neurosurgery.

[34]  J. Frangos,et al.  Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. , 2005, American journal of physiology. Heart and circulatory physiology.

[35]  C M Putman,et al.  Hemodynamic Patterns of Anterior Communicating Artery Aneurysms: A Possible Association with Rupture , 2009, American Journal of Neuroradiology.

[36]  K Watanabe,et al.  Noninvasive detection of intracranial vascular lesions by recording blood flow sounds. , 1994, Stroke.