Positive Streamer Propagation and Breakdown in Air: the Influence of Humidity

The influence of humidity on streamer propagation at conditions from the threshold for propagation to those for streamer-induced breakdown was investigated in a uniform field in air at atmospheric pressure. Experiments were carried out in a three electrode arrangement consisting of a 12 cm long parallel-plane gap, with an auxiliary needle in the earthed anode. Positive streamers were initiated by applying at the needle electrode a pulse voltage which varied in amplitude. These propagated towards the upper plane electrode which was stressed by a negative dc voltage. Under natural atmospheric conditions, propagation and breakdown probability curves were obtained for several values of absolute humidity in the range between 5 and 22 g/m3. Thus, distributions of the electric field required for streamer propagation and breakdown were obtained and the associated velocity of propagation and time to breakdown were measured. Besides humidity, the amplitude of the voltage used for streamer initiation and the ambient electric field were considered as influencing parameters on streamer properties. Empirical equations are presented expressing the effects of the above parameters on the intrinsic streamer properties. A comparison with previous work in the literature is made and this leads to the conclusion that the influence of humidity on streamer propagation and breakdown can be placed in a sounder quantitative basis.