A note on teleparallel conformal Killing vector fields in plane symmetric non-static spacetimes

The aim of this paper is to investigate teleparallel conformal Killing vector fields (CKVFs) in plane symmetric non-static spacetimes. Ten teleparallel conformal Killing’s equations are obtained which are linear in the components of the teleparallel CKVF X. A general solution of these equations comprising the components of CKVF and conformal factor is presented, which subject to some integrability conditions. For seven particular choices of the metric functions, the integrability conditions are completely solved to get the final form of teleparallel CKVFs and conformal factor. In four different cases we get proper CKVFs, while in the remaining three cases it is shown that teleparallel CKVFs reduce to teleparallel homothetic or teleparallel Killing vector fields.

[1]  Suhail Khan,et al.  Conformal Killing symmetries of plane-symmetric static spacetimes in teleparallel theory of gravitation , 2014 .

[2]  G. Shabbir,et al.  A Note on Classification of Teleparallel Conformal Vector Fields in Cylindrically Symmetric Static Space-Times in the Teleparallel Theory of Gravitation , 2013 .

[3]  L. Herrera,et al.  Reversible dissipative processes, conformal motions and Landau damping , 2012, 1201.1390.

[4]  S. Maharaj,et al.  Conformal Symmetries of Spherical Spacetimes , 2010, 1108.4111.

[5]  M. Esculpi,et al.  Conformal anisotropic relativistic charged fluid spheres with a linear equation of state , 2010 .

[6]  K. Saifullah,et al.  Conformal motions in plane symmetric static spacetimes , 2009, 0902.3813.

[7]  M. Sharif,et al.  TELEPARALLEL KILLING VECTORS OF THE EINSTEIN UNIVERSE , 2007, 0708.3558.

[8]  C. Boehmer,et al.  Conformally symmetric traversable wormholes , 2007, 0708.1537.

[9]  T. Chrobok,et al.  Thermodynamical equilibrium and spacetime geometry , 2006 .

[10]  T. Harko,et al.  Quark stars admitting a one parameter group of conformal motions , 2003, gr-qc/0309069.

[11]  F. Hehl,et al.  Metric-Affine Gauge Theory of Gravity II:. Exact Solutions , 1999, gr-qc/9902076.

[12]  J. G. Pereira,et al.  Gravitational Lorentz force and the description of the gravitational interaction , 1997, gr-qc/9703059.

[13]  F. Hehl,et al.  An axially symmetric solution of metric-affine gravity , 1996, gr-qc/9604035.

[14]  F. Hehl,et al.  An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges , 1996, gr-qc/9604027.

[15]  R. Maartens,et al.  General solution and classification of conformal motions in static spherical spacetimes , 1995 .

[16]  R. Maartens,et al.  Conformal symmetries of pp-waves , 1991 .

[17]  Metin Gürses,et al.  The exterior gravitational field of a charged spinning source in the poincaré gauge theory: A Kerr-newman metric with dynamic torsion , 1988 .

[18]  R. Maartens,et al.  Conformal Killing vectors in Robertson-Walker spacetimes , 1986 .

[19]  F. Hehl,et al.  Metric-affine variational principles in general relativity II. Relaxation of the Riemannian constraint , 1981 .

[20]  K. Hayashi The Gauge Theory of the Translation Group and Underlying Geometry , 1977 .

[21]  T. Nakano,et al.  Extended Translation Invariance and Associated Gauge Fields , 1967 .