Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites

Increases in cytosolic Ca2+ concentration ([Ca2+]i) mediated by NMDA-sensitive glutamate receptors (NMDARs) are important for synaptic plasticity. We studied a wide variety of dendritic spines on rat CA1 pyramidal neurons in acute hippocampal slices. Two-photon uncaging and Ca2+ imaging revealed that NMDAR-mediated currents increased with spine-head volume and that even the smallest spines contained a significant number of NMDARs. The fate of Ca2+ that entered spine heads through NMDARs was governed by the shape (length and radius) of the spine neck. Larger spines had necks that permitted greater efflux of Ca2+ into the dendritic shaft, whereas smaller spines manifested a larger increase in [Ca2+]i within the spine compartment as a result of a smaller Ca2+ flux through the neck. Spine-neck geometry is thus an important determinant of spine Ca2+ signaling, allowing small spines to be the preferential sites for isolated induction of long-term potentiation.

[1]  S. Baylor,et al.  Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. , 1993, Biophysical journal.

[2]  M. Wilson,et al.  NMDA receptors, place cells and hippocampal spatial memory , 2004, Nature Reviews Neuroscience.

[3]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[4]  E. Fifková,et al.  Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer , 1981, Experimental Neurology.

[5]  Yasushi Miyashita,et al.  Supralinear Ca2+ Signaling by Cooperative and Mobile Ca2+ Buffering in Purkinje Neurons , 1999, Neuron.

[6]  Fritjof Helmchen,et al.  Raising the speed limit – fast Ca2+ handling in dendritic spines , 2002, Trends in Neurosciences.

[7]  W. Brown,et al.  Analysis of neocortex in three males with the fragile X syndrome. , 1991, American journal of medical genetics.

[8]  D. DiGregorio,et al.  Localized detection of action potential‐induced presynaptic calcium transients at a Xenopus neuromuscular junction , 1997, The Journal of physiology.

[9]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[10]  Ina Ruck,et al.  USA , 1969, The Lancet.

[11]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[12]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[13]  D. Purpura,et al.  Dendritic Spine "Dysgenesis" and Mental Retardation , 1974, Science.

[14]  E. Friedman Life cycle. , 2003, Health Forum journal.

[15]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[16]  K. Svoboda,et al.  The Number of Glutamate Receptors Opened by Synaptic Stimulation in Single Hippocampal Spines , 2004, The Journal of Neuroscience.

[17]  E Neher,et al.  Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. , 1993, The Journal of physiology.

[18]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[20]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[22]  Dirk Dietrich,et al.  Endogenous Ca2+ Buffer Concentration and Ca2+ Microdomains in Hippocampal Neurons , 2005, The Journal of Neuroscience.

[23]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[24]  Gastone C. Castellani,et al.  Converging evidence for a simplified biophysical model of synaptic plasticity , 2002, Biological Cybernetics.

[25]  D. Kullmann,et al.  Extrasynaptic Glutamate Diffusion in the Hippocampus: Ultrastructural Constraints, Uptake, and Receptor Activation , 1998, The Journal of Neuroscience.

[26]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Rafael Yuste,et al.  Spine Motility Phenomenology, Mechanisms, and Function , 2002, Neuron.

[28]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[29]  Rafael Yuste,et al.  Calcium Dynamics of Spines Depend on Their Dendritic Location , 2002, Neuron.

[30]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[31]  O. Garaschuk,et al.  Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. , 1996, The Journal of physiology.

[32]  Kristen M Harris,et al.  Dendritic Spine Pathology: Cause or Consequence of Neurological Disorders? , 2002, Brain Research Reviews.

[33]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[34]  Yehezkel Ben-Ari,et al.  The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite , 1999, The Journal of Neuroscience.

[35]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[36]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[37]  CE Jahr,et al.  Interactions between the glycine and glutamate binding sites of the NMDA receptor , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Nicholls From neuron to brain , 1976 .

[39]  B. Hille Ionic channels of excitable membranes , 2001 .

[40]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[41]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[42]  M. Sheng,et al.  Postsynaptic Signaling and Plasticity Mechanisms , 2002, Science.

[43]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[44]  G M Shepherd,et al.  The dendritic spine: a multifunctional integrative unit. , 1996, Journal of neurophysiology.

[45]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[46]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[47]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[48]  Kristen M Harris,et al.  Structural changes at dendritic spine synapses during long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  J. Lisman Long-term potentiation: outstanding questions and attempted synthesis. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[51]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[52]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[53]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[54]  B. Gustafsson,et al.  Spontaneous Unitary Synaptic Activity in CA1 Pyramidal Neurons during Early Postnatal Development: Constant Contribution of AMPA and NMDA Receptors , 2002, The Journal of Neuroscience.

[55]  M. Mishina,et al.  Roles of diverse glutamate receptors in brain functions elucidated by subunit-specific and region-specific gene targeting. , 2003, Life sciences.

[56]  D H Perkel,et al.  The function of dendritic spines: a review of theoretical issues. , 1985, Behavioral and neural biology.

[57]  David Holcman,et al.  Dynamic regulation of spine–dendrite coupling in cultured hippocampal neurons , 2004, The European journal of neuroscience.

[58]  R. Yuste,et al.  Regulation of Spine Calcium Dynamics by Rapid Spine Motility Materials and Methods , 2022 .

[59]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[60]  K. Harris,et al.  Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  S. Halpain,et al.  Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[63]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.