Modeling Galaxy-mass Correlations in Dissipationless Simulations

We use high-resolution, dissipationless simulations of the concordance flat ΛCDM model to make predictions for the galaxy-mass correlations and compare them with the recent Sloan Digital Sky Survey (SDSS) weak-lensing measurements of Sheldon et al. The simulations resolve both isolated galaxy-sized host halos and satellite halos (subhalos) within them. We use a simple scheme based on matching the circular velocity function of halos to the galaxy luminosity function and on using the observed density-color correlation of the SDSS galaxies to assign luminosities and colors to the halos. This allows us to closely match the selection criteria used to define observational samples. The simulations reproduce the observed galaxy-mass correlation function and the observed dependence of its shape and amplitude on luminosity and color, if a reasonable amount of scatter between galaxy luminosity and circular velocity is assumed. We find that the luminosity dependence of the correlation function is primarily determined by the changing relative contribution of central and satellite galaxies at different luminosities. The color dependence of the galaxy-mass correlations reflects the difference in the typical environments of blue and red galaxies. We compare the cross-biases, bx ≡ b/r, measured in simulations and observations and find a good agreement at all probed scales. We show that the galaxy-mass correlation coefficient r is close to unity on scales greater than ~1 h-1 Mpc. This indicates that the cross-bias measured in weak-lensing observations should measure the actual bias b of galaxy clustering on these scales. In agreement with previous studies, we find that the aperture mass-to-light ratio is independent of galaxy color in the range of luminosities probed by observational samples. The aperture mass scales approximately linearly with luminosity at Lr > 1010 h-2 L☉, while at lower luminosities the scaling is shallower: MΔΣ ∝ L. We show that most of the luminous galaxies (Mr < -21) are near the centers of their halos and that their galaxy-mass correlation function at r ≲ 100 h-1 kpc can therefore be interpreted as the average dark matter density profile of these galaxies. Finally, we find that for galaxies in a given narrow luminosity range, there is a broad and possibly non-Gaussian distribution of halo virial masses. Therefore, the average relation between mass and luminosity derived from the weak-lensing analyses should be interpreted with caution.

[1]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[2]  A. Klypin,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004, astro-ph/0401088.

[3]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[4]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[5]  H. Hoekstra,et al.  Properties of Galaxy Dark Matter Halos from Weak Lensing , 2003, astro-ph/0310756.

[6]  A. Dressler,et al.  Clusters of Galaxies : Probes of Cosmological Structure and Galaxy Evolution , 2022 .

[7]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[8]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[9]  M. SubbaRao,et al.  The Velocity Dispersion Function of Early-Type Galaxies , 2003, astro-ph/0303092.

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[11]  M. Neyrinck,et al.  Understanding the PSCz galaxy power spectrum with N-body simulations , 2003, astro-ph/0302003.

[12]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[13]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[14]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[15]  Lars Hernquist,et al.  Galaxy Clustering and Galaxy Bias in a ΛCDM Universe , 2002, astro-ph/0212356.

[16]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[17]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[18]  G. Kauffmann,et al.  Understanding the results of galaxy-galaxy lensing using galaxy-mass correlation in numerical simulations , 2002, astro-ph/0205546.

[19]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[20]  D. Lamb,et al.  Dynamical Confirmation of Sloan Digital Sky Survey Weak-lensing Scaling Laws , 2002, astro-ph/0204383.

[21]  D. Fabricant,et al.  Physical Sources of Scatter in the Tully-Fisher Relation , 2002, astro-ph/0202111.

[22]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[23]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[24]  U. Seljak,et al.  Virial masses of galactic halos from galaxy-galaxy lensing : theoretical modeling and application to SDSS , 2002 .

[25]  H. Hoekstra,et al.  Measurement of the Bias Parameter from Weak Lensing , 2001, astro-ph/0107413.

[26]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[27]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering , 2001, astro-ph/0105500.

[28]  Y. Suto,et al.  Nonlinear Stochastic Biasing of Galaxies and Dark Halos in Cosmological Hydrodynamic Simulations , 2001, astro-ph/0104361.

[29]  R. Nichol,et al.  Weak-Lensing Measurements of 42 SDSS/RASS Galaxy Clusters , 2001, astro-ph/0103029.

[30]  M. White,et al.  The Halo Model and Numerical Simulations , 2000, astro-ph/0012518.

[31]  R. Wechsler,et al.  Galaxy Formation at z ~ 3: Constraints from Spatial Clustering , 2000, astro-ph/0011261.

[32]  G. Bernstein,et al.  Weak-Lensing Determination of the Mass in Galaxy Halos , 2000, astro-ph/0010071.

[33]  G. Luppino,et al.  Galaxy Halo Masses from Galaxy-Galaxy Lensing , 2000, astro-ph/0008504.

[34]  U. Seljak,et al.  Galaxy-Galaxy Lensing Predictions from the Semi-Analytic Galaxy Formation Models , 2000, astro-ph/0007067.

[35]  Garching,et al.  Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.

[36]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[37]  J. Peacock,et al.  Simulations of galaxy formation in a cosmological volume , 2000, astro-ph/0010587.

[38]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[39]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[40]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[41]  M. Verheijen The Ursa Major Cluster of Galaxies. V. H I Rotation Curve Shapes and the Tully-Fisher Relations , 1999, astro-ph/0108225.

[42]  C. Baugh,et al.  The dependence of velocity and clustering statistics on galaxy properties , 1999, astro-ph/9910488.

[43]  S. Faber,et al.  Young Galaxies: What Turns Them On? , 1999, astro-ph/9906104.

[44]  A. Klypin,et al.  The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes , 1998, astro-ph/9812311.

[45]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe — II. Evolution to high redshift , 1998, astro-ph/9809168.

[46]  D. Weinberg,et al.  The Clustering of High-Redshift Galaxies in the Cold Dark Matter Scenario , 1998, astro-ph/9806257.

[47]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[48]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[49]  A. Klypin,et al.  Evolution of Bias in Different Cosmological Models , 1998, astro-ph/9809202.

[50]  C. Baugh,et al.  The seeds of rich galaxy clusters in the Universe , 1998, Nature.

[51]  U. Pen Reconstructing Nonlinear Stochastic Bias from Velocity Space Distortions , 1997, astro-ph/9711180.

[52]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[53]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[54]  S. Faber,et al.  Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. III. The Mark III Catalog of Galaxy Peculiar Velocities , 1996, astro-ph/9610202.

[55]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[56]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[57]  R. Blandford,et al.  Weak Gravitational Lensing by Galaxies , 1995, astro-ph/9503073.

[58]  J. Miralda-Escudé Gravitational lensing by clusters of galaxies - Constraining the mass distribution , 1991 .

[59]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[60]  J. Mould,et al.  A distance scale from the infrared magnitude/H I velocity-width relation. IV. The morphological type dependence and scatter in the relation; the distances to nearby groups. , 1983 .