Optimal digital controller and observer design for multiple time-delay transfer function matrices with multiple input–output time delays

In this article, we address the optimal digital design methodology for multiple time-delay transfer function matrices with multiple input–output time delays. In our approach, the multiple time-delay analogue transfer function matrix with multiple input–output time delays is minimally realised using a continuous-time state-space model. For deriving an explicit form of the optimal digital controller, the realised continuous-time multiple input–output time-delay system is discretised, and an extended high-order discrete-time state-space model is constructed for discrete-time LQR design. To derive a low-order optimal digital observer for the multiple input–output time-delay system, the multiple time-delay state obtained from the multiple time-delay outputs is discretised. Then, the well-known duality concept is employed to design an optimal digital observer using the low-order discretised multiple input time-delay system together with the newly discretised multiple time-delay state. The proposed approach is restricted to multiple time-delay systems where multiple time delays arise only in the input and output, and not in the state.

[1]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[2]  M. Malek-Zavarei,et al.  Time-Delay Systems: Analysis, Optimization and Applications , 1987 .

[3]  Masami Ito,et al.  An observer for linear feedback control laws of multivariable systems with multiple delays in controls and outputs , 1981 .

[4]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[5]  M. Mahmoud Robust Control and Filtering for Time-Delay Systems , 2000 .

[6]  Huanshui Zhang,et al.  Linear quadratic regulation for linear time-varying systems with multiple input delays part I: discrete-time case , 2005, 2005 International Conference on Control and Automation.

[7]  Qing-Guo Wang,et al.  Relay Feedback: Analysis, Identification and Control , 2002 .

[8]  M. Chidambaram,et al.  Computer Control of Processes , 2001 .

[9]  G. Meinsma,et al.  On H 2 control of systems with multiple I/O delays , 2006 .

[10]  Konstantin Yu. Polyakov H2-OPTIMAL SAMPLED-DATA CONTROL FOR PLANTS WITH MULTIPLE INPUT AND OUTPUT DELAYS , 2008 .

[11]  Ron J. Patton,et al.  An observer design for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[12]  Michael V. Basin,et al.  Optimal control for linear systems with multiple time delays in control input , 2006, IEEE Transactions on Automatic Control.

[13]  Jong Hae Kim,et al.  Hinfinity state feedback control for generalized continuous/discrete time-delay system , 1999, Autom..

[14]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[15]  Richard Marquez,et al.  An extension of predictive control, PID regulators and Smith predictors to some linear delay systems , 2002 .

[16]  Jesus Leyva-Ramos,et al.  An asymptotic modal observer for linear autonomous time lag systems , 1995, IEEE Trans. Autom. Control..

[17]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[18]  H. Trinh,et al.  A memoryless state observer for discrete time-delay systems , 1997, IEEE Trans. Autom. Control..

[19]  Leang-San Shieh,et al.  STATE‐SPACE DIGITAL PID CONTROLLER DESIGN FOR MULTIVARIABLE ANALOG SYSTEMS WITH MULTIPLE TIME DELAYS , 2006 .

[20]  L. Mirkin,et al.  H/sup /spl infin// control of systems with multiple I/O delays via decomposition to adobe problems , 2005, IEEE Transactions on Automatic Control.

[21]  Qing Zhao,et al.  H¿ optimal sampled-data state observer design , 2006 .

[22]  Osvaldo Simeone,et al.  Relay Feedback Analysis Identification And Control , 2007 .

[23]  H. Trinh Linear functional state observer for time-delay systems , 1999 .

[24]  Leang-San Shieh,et al.  Minimal realisation of the transfer function matrix with multiple time delays , 2007 .

[25]  M. Boutayeb Observers design for linear time-delay systems , 2001, Syst. Control. Lett..