Model of the extended emission of short gamma-ray bursts

The existence of extended emission (EE) is an intriguing property of short-duration gamma-ray bursts, because the nature of the EE is still unclear. It might be a rising X-ray afterglow, or it could be a manifestation of the prolonged activity of a central engine. We consider short-duration gamma-ray bursts, emphasizing the common properties of both short bursts and short bursts with EE. Assuming that the EE with broad dynamic range is a common property of short bursts, we propose a two jet model which can describe both short main episode of hard spectra emission, specific for short bursts, and softer spectra EE by different off axis position of observer. The model involves a short-duration jet, which is powered by heating due to annihilation, and a long-lived Blandford–Znajek jet with a significantly narrow opening angle. Our proposed model is a plausible mechanism for short-duration burst energization. It can explain short bursts both with and without EE within a single class of progenitor.

[1]  V. Connaughton,et al.  BATSE Observations of Gamma-Ray Burst Tails , 2001, astro-ph/0111564.

[2]  Neutrino-cooled Accretion Disks around Spinning Black Holes , 2006, astro-ph/0607145.

[3]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[4]  P. N. Bhat,et al.  FERMI OBSERVATIONS OF GRB 090510: A SHORT–HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES , 2010, 1005.2141.

[5]  N. Gehrels,et al.  HETEROGENEITY IN SHORT GAMMA-RAY BURSTS , 2011, 1101.1648.

[6]  R. Lovelace,et al.  Large-Scale B-Field in Stationary Accretion Disks , 2007, 0708.2726.

[7]  Yu. A. Gur'yan,et al.  Catalog of cosmic gamma-ray bursts from the KONUS experiment data , 1981 .

[8]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[9]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[10]  GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF COLLAPSARS: ROTATING BLACK HOLE CASES , 2003, astro-ph/0310017.

[11]  R. Lovelace,et al.  ADVECTION/DIFFUSION OF LARGE-SCALE B FIELD IN ACCRETION DISKS , 2009, 0906.0345.

[12]  William H. Lee,et al.  The Progenitors of Short Gamma-Ray Bursts , 2007 .

[13]  J.-L. Atteia,et al.  HETE-2 Localizations and Observations of Four Short Gamma-Ray Bursts: GRBs 010326B, 040802, 051211 and 060121 , 2006 .

[14]  S. Komissarov,et al.  Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources , 2009, 0912.0845.

[15]  D. Fugazza,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[16]  I. Igumenshchev Magnetically Arrested Disks and Origin of Poynting Jets: Numerical Study , 2007, 0711.4391.

[17]  P. Giommi,et al.  An origin for short γ-ray bursts unassociated with current star formation , 2005, Nature.

[18]  Neil Gehrels,et al.  GAMMA-RAY BURST: Sixth Huntsville Symposium , 2009 .

[19]  F. Frontera Gamma Ray Bursts in the Afterglow Era , 2003 .

[20]  R. Lovelace,et al.  Advection of Magnetic Fields in Accretion Disks: Not So Difficult After All , 2008, 0801.2158.

[21]  Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model , 1998, astro-ph/9804167.

[22]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[23]  Cosmology,et al.  Magnetohydrodynamic simulations of gamma-ray burst jets: Beyond the progenitor star , 2009, 0909.0011.

[24]  S. Komissarov,et al.  Stellar explosions powered by the Blandford-Znajek mechanism , 2007, 0710.2654.

[25]  Observatoire Midi-Pyrenees,et al.  On the nature of X-ray Flashes , 2004 .

[26]  Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts , 1998, astro-ph/9808094.

[27]  Bernard J. Kelly,et al.  Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.

[28]  J. P. Norris,et al.  Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts , 1999, astro-ph/9903233.

[29]  Jesper Sollerman,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[30]  K. Kotake,et al.  A GENERAL RELATIVISTIC RAY-TRACING METHOD FOR ESTIMATING THE ENERGY AND MOMENTUM DEPOSITION BY NEUTRINO PAIR ANNIHILATION IN COLLAPSARS , 2010, 1007.3165.

[31]  Liverpool John Moores University,et al.  Evidence of a Long-Duration Component in the Prompt Emission of Short Gamma-Ray Bursts Detected with BeppoSAX , 2005, astro-ph/0504199.

[32]  M. Feroci,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[33]  T. Piran,et al.  Variability in GRBs - A Clue , 1997, astro-ph/9701002.

[34]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[35]  M. Barkov Hard X-Ray bursts in collapse of supermassive stars , 2010, 1003.4379.

[36]  Hyper- and Suspended-Accretion States of Rotating Black Holes and the Durations of Gamma-Ray Bursts , 2000, astro-ph/0010440.

[37]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[38]  A. Ruzmaikin,et al.  The accretion of matter by a collapsing star in the presence of a magnetic field. II. Selfconsistent stationary picture , 1976 .

[39]  Enrico Ramirez-Ruiz,et al.  Possible detection of hard X-ray afterglows of short $\gamma$-ray bursts , 2001 .

[40]  Jay P. Norris Implications of the Lag-Luminosity Relationship for Unified Gamma-Ray Burst Paradigms , 2002 .

[41]  P. Minaev,et al.  Extended emission from short gamma-ray bursts detected with SPI-ACS/INTEGRAL , 2010, 1009.2685.

[42]  Chris L. Fryer,et al.  Hyperaccreting Black Holes and Gamma-Ray Bursts , 1998, astro-ph/9807028.

[43]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[44]  D. Haglin,et al.  A Gamma-Ray Burst Database of BATSE Spectral Lag and Internal Luminosity Function Values , 2007 .

[45]  A. Ruzmaikin,et al.  The accretion of matter by a collapsing star in the presence of a magnetic field , 1974 .

[46]  S. Komissarov,et al.  Close binary progenitors of gamma-ray bursts , 2009, 0908.0695.

[47]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[48]  M. Ruffert,et al.  Polytropic neutron star – black hole merger simulations with a Paczyński-Wiita potential , 2009, 0906.3998.

[49]  A. Beloborodov,et al.  Neutrino heating near hyper-accreting black holes , 2010, 1003.0710.

[50]  C. Kouveliotou,et al.  Systematic effects on duration measurements of gamma ray bursts , 1996 .

[51]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[52]  T. Piran,et al.  Variability in Gamma-Ray Bursts: A Clue , 1997 .

[53]  R. Wijers,et al.  Issues Regarding the Blandford-Znajek Process as a Gamma-Ray Burst Inner Engine , 1999, astro-ph/9911401.

[54]  A. Corsi,et al.  HIGH-ENERGY EMISSION COMPONENTS IN THE SHORT GRB 090510 , 2009, 0911.4453.

[55]  Sergei Nayakshin,et al.  Expanding relativistic shells and gamma-ray burst temporal structure , 1996 .

[56]  Jerry T. Bonnell,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006 .

[57]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[58]  A. Baushev,et al.  Accretion of a massive magnetized torus on a rotating black hole , 2009, 0905.4440.

[59]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[60]  T. Sakamoto,et al.  SPECTRAL LAGS AND THE LAG–LUMINOSITY RELATION: AN INVESTIGATION WITH SWIFT BAT GAMMA-RAY BURSTS , 2009, 0908.2370.

[61]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.