Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations.

[1]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[2]  Jacek Gondzio,et al.  Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming , 2012, SIAM J. Optim..

[3]  Jacek Gondzio,et al.  Interior point methods 25 years later , 2012, Eur. J. Oper. Res..

[4]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[5]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[6]  A. Wathen,et al.  All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .

[7]  Marcus J. Grote,et al.  Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization , 2014, SIAM J. Sci. Comput..

[8]  Do Y. Kwak,et al.  Accuracy and Convergence Properties of the Finite Difference Multigrid Solution of an Optimal Control Optimality System , 2002, SIAM J. Control. Optim..

[9]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[10]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[11]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[12]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[13]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[14]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[15]  Valeria Simoncini,et al.  Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems , 2014, SIAM J. Sci. Comput..

[16]  Martin Weiser,et al.  Inexact Central Path Following Algorithms for Optimal Control Problems , 2007, SIAM J. Control. Optim..

[17]  Cosmin G. Petra,et al.  Multigrid Preconditioning of Linear Systems for Interior Point Methods Applied to a Class of Box-constrained Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[18]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[19]  Jennifer Pestana,et al.  Null-Space Preconditioners for Saddle Point Systems , 2016, SIAM J. Matrix Anal. Appl..

[20]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[21]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[22]  Howard C. Elman,et al.  IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..

[23]  Karl Kunisch,et al.  A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..

[24]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[25]  Ilse C. F. Ipsen A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..

[26]  Martin Weiser,et al.  Interior Point Methods in Function Space , 2005, SIAM J. Control. Optim..

[27]  Ekkehard W. Sachs,et al.  Multilevel Algorithms for Constrained Compact Fixed Point Problems , 1994, SIAM J. Sci. Comput..

[28]  Buyang Li,et al.  A Fast and Stable Preconditioned Iterative Method for Optimal Control Problem of Wave Equations , 2015, SIAM J. Sci. Comput..

[29]  S. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .

[30]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[31]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[32]  Luca Bergamaschi,et al.  RMCP: Relaxed Mixed Constraint Preconditioners for Saddle Point Linear Systems arising in Geomechanics , 2012 .

[33]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[34]  YU. A. KUZNETSOV,et al.  Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .

[35]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[36]  Michele Benzi,et al.  Multilevel Algorithms for Large-Scale Interior Point Methods , 2009, SIAM J. Sci. Comput..

[37]  Stefan Ulbrich,et al.  Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems , 2014, SIAM J. Optim..

[38]  Martin Weiser,et al.  A control reduced primal interior point method for a class of control constrained optimal control problems , 2008, Comput. Optim. Appl..

[39]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[40]  M. Hinze,et al.  A space-time multigrid solver for distributed control of the time-dependent Navier-Stokes system , 2008 .

[41]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[42]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[43]  A. Wathen,et al.  Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .

[44]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[45]  Hans D. Mittelmann,et al.  Solving elliptic control problems with interior point and SQP methods: control and state constraints , 2000 .

[46]  M. Hinze,et al.  A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .

[47]  A. Wathen,et al.  FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .

[48]  H GolubGene,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[49]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[50]  Stefan Ulbrich,et al.  Primal-dual interior-point methods for PDE-constrained optimization , 2008, Math. Program..