Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization
暂无分享,去创建一个
[1] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[2] Jacek Gondzio,et al. Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming , 2012, SIAM J. Optim..
[3] Jacek Gondzio,et al. Interior point methods 25 years later , 2012, Eur. J. Oper. Res..
[4] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[5] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[6] A. Wathen,et al. All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .
[7] Marcus J. Grote,et al. Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization , 2014, SIAM J. Sci. Comput..
[8] Do Y. Kwak,et al. Accuracy and Convergence Properties of the Finite Difference Multigrid Solution of an Optimal Control Optimality System , 2002, SIAM J. Control. Optim..
[9] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[10] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[11] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[12] Karl Kunisch,et al. A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..
[13] Martin J. Gander,et al. Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .
[14] Martin J. Gander,et al. Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.
[15] Valeria Simoncini,et al. Preconditioning of Active-Set Newton Methods for PDE-constrained Optimal Control Problems , 2014, SIAM J. Sci. Comput..
[16] Martin Weiser,et al. Inexact Central Path Following Algorithms for Optimal Control Problems , 2007, SIAM J. Control. Optim..
[17] Cosmin G. Petra,et al. Multigrid Preconditioning of Linear Systems for Interior Point Methods Applied to a Class of Box-constrained Optimal Control Problems , 2010, SIAM J. Numer. Anal..
[18] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[19] Jennifer Pestana,et al. Null-Space Preconditioners for Saddle Point Systems , 2016, SIAM J. Matrix Anal. Appl..
[20] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[21] Martin Stoll,et al. Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[22] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[23] Karl Kunisch,et al. A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..
[24] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[25] Ilse C. F. Ipsen. A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..
[26] Martin Weiser,et al. Interior Point Methods in Function Space , 2005, SIAM J. Control. Optim..
[27] Ekkehard W. Sachs,et al. Multilevel Algorithms for Constrained Compact Fixed Point Problems , 1994, SIAM J. Sci. Comput..
[28] Buyang Li,et al. A Fast and Stable Preconditioned Iterative Method for Optimal Control Problem of Wave Equations , 2015, SIAM J. Sci. Comput..
[29] S. SIAMJ.,et al. AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .
[30] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[31] Alfio Borzì,et al. Multigrid Methods for PDE Optimization , 2009, SIAM Rev..
[32] Luca Bergamaschi,et al. RMCP: Relaxed Mixed Constraint Preconditioners for Saddle Point Linear Systems arising in Geomechanics , 2012 .
[33] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[34] YU. A. KUZNETSOV,et al. Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .
[35] R. Herzog,et al. Algorithms for PDE‐constrained optimization , 2010 .
[36] Michele Benzi,et al. Multilevel Algorithms for Large-Scale Interior Point Methods , 2009, SIAM J. Sci. Comput..
[37] Stefan Ulbrich,et al. Operator Preconditioning for a Class of Inequality Constrained Optimal Control Problems , 2014, SIAM J. Optim..
[38] Martin Weiser,et al. A control reduced primal interior point method for a class of control constrained optimal control problems , 2008, Comput. Optim. Appl..
[39] Ragnar Winther,et al. A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..
[40] M. Hinze,et al. A space-time multigrid solver for distributed control of the time-dependent Navier-Stokes system , 2008 .
[41] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[42] Andrew J. Wathen,et al. A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..
[43] A. Wathen,et al. Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .
[44] Matthias Heinkenschloss,et al. Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .
[45] Hans D. Mittelmann,et al. Solving elliptic control problems with interior point and SQP methods: control and state constraints , 2000 .
[46] M. Hinze,et al. A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .
[47] A. Wathen,et al. FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .
[48] H GolubGene,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[49] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[50] Stefan Ulbrich,et al. Primal-dual interior-point methods for PDE-constrained optimization , 2008, Math. Program..