Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries

Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg−1 after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.

[1]  Yan Yu,et al.  Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage , 2012 .

[2]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[3]  Chunlei Wang,et al.  Nanoporous tree-like SiO2 films fabricated by sol–gel assisted electrostatic spray deposition , 2012 .

[4]  Haihui Wang,et al.  Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries , 2010 .

[5]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[6]  Jae‐Hun Kim,et al.  Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries , 2007 .

[7]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[8]  Yurong Ren,et al.  Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[9]  M. Ozkan,et al.  Hybrid low resistance ultracapacitor electrodes based on 1-pyrenebutyric acid functionalized centimeter-scale graphene sheets. , 2012, Journal of nanoscience and nanotechnology.

[10]  Yunbo Zhang,et al.  Contact‐Engineered and Void‐Involved Silicon/Carbon Nanohybrids as Lithium‐Ion‐Battery Anodes , 2013, Advanced materials.

[11]  Ramani Narayan,et al.  A Review of the Fate and Effects of Silicones in the Environment , 2003 .

[12]  Liquan Chen,et al.  Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries , 2008 .

[13]  M. Ozkan,et al.  Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors. , 2013, Small.

[14]  N. Afzulpurkar,et al.  Bending and branching of anodic aluminum oxide nanochannels and their applications , 2012 .

[15]  Mitchell S. Wilbanks,et al.  EUROPEAN CENTRE FOR ECOTOXICOLOGY AND TOXICOLOGY OF CHEMICALS , 2005 .

[16]  Seung M. Oh,et al.  Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode , 2007 .

[17]  B. Landi,et al.  High energy density lithium-ion batteries with carbon nanotube anodes , 2010 .

[18]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[19]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[20]  F. Wang,et al.  Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries , 2013, Scientific Reports.

[21]  Yongxing Hu,et al.  PDMS rubber as a single-source precursor for templated growth of silica nanotubes. , 2009, Chemical communications.

[22]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[23]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[24]  Kyeongse Song,et al.  Hierarchical SiOx nanoconifers for Li-ion battery anodes with structural stability and kinetic enhancement , 2013 .

[25]  Massimo Lazzari,et al.  Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects , 2001 .

[26]  Jae-Hun Kim,et al.  Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries , 2008 .

[27]  Leigang Xue,et al.  Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries , 2011 .

[28]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[29]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[30]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advances in Materials.

[31]  Jingying Xie,et al.  SiOx-based anodes for secondary lithium batteries , 2002 .

[32]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[33]  Vivek B. Shenoy,et al.  Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries , 2012 .

[34]  K. Stevenson,et al.  Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions , 2012 .

[35]  G. Camino,et al.  Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms , 2002 .

[36]  P. Parilla,et al.  Template synthesis of carbon nanotubes , 1999 .

[37]  Wei Wang,et al.  Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors , 2013 .

[38]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[39]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[40]  Jie Wang,et al.  Nano-sized SiOx/C composite anode for lithium ion batteries , 2011 .

[41]  Cheol‐Min Park,et al.  Quartz (SiO2): a new energy storage anode material for Li-ion batteries , 2012 .

[42]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[43]  A. A. Yaroshevsky Abundances of chemical elements in the Earth’s crust , 2006 .

[44]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[45]  S. Kondo,et al.  Spontaneous ignition limits of silane and phosphine , 1995 .

[46]  M. Ozkan,et al.  Chrysanthemum like carbon nanofiber foam architectures for supercapacitors , 2013 .

[47]  Y. Cuia,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[48]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[49]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[50]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[51]  Deren Yang,et al.  Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries , 2011 .

[52]  Chaiwat Engtrakul,et al.  Lithiation of silica through partial reduction , 2012 .