Weak properties and robustness of t-Hill estimators

We describe a novel method of heavy tails estimation based on transformed score (t-score). Based on a new score moment method we derive the t-Hill estimator, which estimates the extreme value index of a distribution function with regularly varying tail. t-Hill estimator is distribution sensitive, thus it differs in e.g. Pareto and log-gamma case. Here, we study both forms of the estimator, i.e. t-Hill and t-lgHill. For both estimators we prove weak consistency in moving average settings as well as the asymptotic normality of t-lgHill estimator in iid setting. In cases of contamination with heavier tails than the tail of original sample, t-Hill outperforms several robust tail estimators, especially in small samples. A simulation study emphasizes the fact that the level of contamination is playing a crucial role. The larger the contamination, the better are the t-score moment estimates. The reason for this is the bounded t-score of heavy-tailed distributions (and, consequently, bounded influence functions of the estimators). We illustrate the developed methodology on a small sample data set of stake measurements from Guanaco glacier in Chile.

[1]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[2]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[3]  Maria-Pia Victoria-Feser,et al.  A robust prediction error criterion for pareto modelling of upper tails , 2005 .

[4]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[5]  F. Y. Edgeworth On the Probable Errors of Frequency-Constants , 1908 .

[6]  S. Resnick,et al.  Consistency of Hill's estimator for dependent data , 1995, Journal of Applied Probability.

[7]  Lindsey Nicholson,et al.  Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass balance and 50 yr surface area variations , 2010 .

[8]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[9]  M. Gomes,et al.  Censoring estimators of a positive tail index , 2003 .

[10]  Stephan Morgenthaler,et al.  Robust weighted likelihood estimators with an application to bivariate extreme value problems , 2002 .

[11]  Jan Beran,et al.  The harmonic moment tail index estimator: asymptotic distribution and robustness , 2014 .

[12]  Josef Steinebach,et al.  ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .

[13]  S. Lhermitte,et al.  Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile , 2010 .

[14]  K. Pearson,et al.  Mathematical Contributions to the Theory of Evolution. IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation , .

[15]  Milan Stehlík,et al.  Small Sample Robust Testing for Normality against Pareto Tails , 2012, Commun. Stat. Simul. Comput..

[16]  Estimation of simple characteristics of samples from skewed and heavy-tailed distributions , 2007 .

[17]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[18]  M. Ivette Gomes,et al.  A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..

[19]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[20]  M. Finkelstein,et al.  Pareto Tail Index Estimation Revisited , 2006 .

[21]  S. Resnick,et al.  The qq-estimator and heavy tails , 1996 .

[22]  S. Nadarajah,et al.  Asymptotic normality of location invariant heavy tail index estimator , 2010 .

[23]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[24]  F. Y. Edgeworth On the Probable Errors of Frequency‐Constants (Contd.) , 1908 .

[25]  Mathématiques,et al.  Comptes rendus de l'Academie bulgare des Sciences , 2010 .

[26]  R. Arabi Belaghi,et al.  On the estimation of the extreme value and normal distribution parameters based on progressive type-II hybrid-censored data , 2016 .

[27]  Milan Stehlík,et al.  On the favorable estimation for fitting heavy tailed data , 2010, Comput. Stat..

[28]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[29]  Jan Beran,et al.  On robust tail index estimation , 2012, Comput. Stat. Data Anal..

[30]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[31]  L.F.M. deHaan On regular variation and its application to the weak convergence of sample extremes , 1970 .

[32]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[33]  Z. Fabián Score function of distribution and revival of the moment method , 2016 .

[34]  K. Rittenhouse-Olson Letter from the Editor , 2011, Immunological investigations.

[35]  S. Resnick,et al.  Second-order regular variation, convolution and the central limit theorem , 1997 .

[36]  Michal Brzezinski,et al.  Robust estimation of the Pareto tail index: a Monte Carlo analysis , 2016 .

[37]  Ricardo Oyarzún,et al.  Sustainable development threats, inter‐sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory , 2011 .

[38]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[39]  Christophe Kinnard,et al.  Albedo variations and the impact of clouds on glaciers in the Chilean semi-arid Andes , 2014, Journal of Glaciology.

[40]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[41]  Sidney I. Resnick,et al.  How to make a Hill Plot , 2000 .

[42]  L. Haan,et al.  On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .

[43]  M. I. Fraga Alves,et al.  A Location Invariant Hill-Type Estimator , 2001 .

[44]  V. Paulauskas,et al.  On an improvement of Hill and some other estimators , 2013 .

[45]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[46]  Zdeněk Fabián,et al.  INDUCED CORES AND THEIR USE IN ROBUST PARAMETRIC ESTIMATION , 2001 .

[47]  Andreas Christmann,et al.  A robust estimator for the tail index of Pareto-type distributions , 2007, Comput. Stat. Data Anal..