Weak properties and robustness of t-Hill estimators
暂无分享,去创建一个
Milan Stehlík | Pavlina Jordanova | Luboš Střelec | Philipp Hermann | Zdeněk Fabián | Stéphane Girard | S. Girard | M. Stehlík | P. Hermann | P. Jordanova | Andrés Rivera | L. Střelec | Z. Fabián | Sebastián Torres | Andrés Rivera | Sebastián Torres
[1] U. Stadtmüller,et al. Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[2] Peter J. Huber,et al. Robust Statistics , 2005, Wiley Series in Probability and Statistics.
[3] Maria-Pia Victoria-Feser,et al. A robust prediction error criterion for pareto modelling of upper tails , 2005 .
[4] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[5] F. Y. Edgeworth. On the Probable Errors of Frequency-Constants , 1908 .
[6] S. Resnick,et al. Consistency of Hill's estimator for dependent data , 1995, Journal of Applied Probability.
[7] Lindsey Nicholson,et al. Glacier changes in the Pascua-Lama region, Chilean Andes (29° S): recent mass balance and 50 yr surface area variations , 2010 .
[8] Laurens de Haan,et al. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[9] M. Gomes,et al. Censoring estimators of a positive tail index , 2003 .
[10] Stephan Morgenthaler,et al. Robust weighted likelihood estimators with an application to bivariate extreme value problems , 2002 .
[11] Jan Beran,et al. The harmonic moment tail index estimator: asymptotic distribution and robustness , 2014 .
[12] Josef Steinebach,et al. ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .
[13] S. Lhermitte,et al. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile , 2010 .
[14] K. Pearson,et al. Mathematical Contributions to the Theory of Evolution. IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation , .
[15] Milan Stehlík,et al. Small Sample Robust Testing for Normality against Pareto Tails , 2012, Commun. Stat. Simul. Comput..
[16] Estimation of simple characteristics of samples from skewed and heavy-tailed distributions , 2007 .
[17] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[18] M. Ivette Gomes,et al. A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..
[19] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[20] M. Finkelstein,et al. Pareto Tail Index Estimation Revisited , 2006 .
[21] S. Resnick,et al. The qq-estimator and heavy tails , 1996 .
[22] S. Nadarajah,et al. Asymptotic normality of location invariant heavy tail index estimator , 2010 .
[23] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[24] F. Y. Edgeworth. On the Probable Errors of Frequency‐Constants (Contd.) , 1908 .
[25] Mathématiques,et al. Comptes rendus de l'Academie bulgare des Sciences , 2010 .
[26] R. Arabi Belaghi,et al. On the estimation of the extreme value and normal distribution parameters based on progressive type-II hybrid-censored data , 2016 .
[27] Milan Stehlík,et al. On the favorable estimation for fitting heavy tailed data , 2010, Comput. Stat..
[28] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[29] Jan Beran,et al. On robust tail index estimation , 2012, Comput. Stat. Data Anal..
[30] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[31] L.F.M. deHaan. On regular variation and its application to the weak convergence of sample extremes , 1970 .
[32] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[33] Z. Fabián. Score function of distribution and revival of the moment method , 2016 .
[34] K. Rittenhouse-Olson. Letter from the Editor , 2011, Immunological investigations.
[35] S. Resnick,et al. Second-order regular variation, convolution and the central limit theorem , 1997 .
[36] Michal Brzezinski,et al. Robust estimation of the Pareto tail index: a Monte Carlo analysis , 2016 .
[37] Ricardo Oyarzún,et al. Sustainable development threats, inter‐sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory , 2011 .
[38] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[39] Christophe Kinnard,et al. Albedo variations and the impact of clouds on glaciers in the Chilean semi-arid Andes , 2014, Journal of Glaciology.
[40] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .
[41] Sidney I. Resnick,et al. How to make a Hill Plot , 2000 .
[42] L. Haan,et al. On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .
[43] M. I. Fraga Alves,et al. A Location Invariant Hill-Type Estimator , 2001 .
[44] V. Paulauskas,et al. On an improvement of Hill and some other estimators , 2013 .
[45] M. Kendall. Statistical Methods for Research Workers , 1937, Nature.
[46] Zdeněk Fabián,et al. INDUCED CORES AND THEIR USE IN ROBUST PARAMETRIC ESTIMATION , 2001 .
[47] Andreas Christmann,et al. A robust estimator for the tail index of Pareto-type distributions , 2007, Comput. Stat. Data Anal..