Spatial charge separation in asymmetric structure of Au nanoparticle on TiO2 nanotube by light-induced surface potential imaging.

Both enhancing the excitons' lifetime and ingeniously controlling the spatial charge transfer are the key to the realization of efficiently photocatalytic and artificially photosynthetic devices. Nanostructured metal/metal-oxide interfaces often exhibit improved energy conversion efficiency. Understanding the surface potential changes of nano-objects under light illumination is crucial in photoelectrochemical cells. Under ultraviolet (UV) illumination, here, we directly observed the charge separation phenomena at the Au-nanoparticle/TiO2-nanotube interfaces by using Kelvin probe force microscopy. The surface potential maps of TiO2 nanotubes with and without Au nanoparticles were compared on the effect of different substrates. We observed that in a steady state, approximately 0.3 electron per Au particle of about 4 nm in diameter is effectively charged and consequently screens the surface potential of the underlying TiO2 nanotubes. Our observations should help design improved photoelectrochemical devices for energy conversion applications.

[1]  Richard Williams,et al.  Photoemission of Electrons from Silicon into Silicon Dioxide , 1965 .

[2]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[3]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[4]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[5]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[6]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[7]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[8]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[9]  Louis E. Brus,et al.  Charge, Polarizability, and Photoionization of Single Semiconductor Nanocrystals , 1999 .

[10]  P. Weiss,et al.  Surface potential of ferroelectric thin films investigated by scanning probe microscopy , 1999 .

[11]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[12]  Prashant V. Kamat,et al.  Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films? , 2001 .

[13]  W. Jaegermann,et al.  XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface: Alignment of Energy Levels , 2002 .

[14]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[15]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[16]  P. Kamat,et al.  Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level , 2003 .

[17]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[18]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[19]  Bin Li,et al.  Two-photon photoemission spectroscopy of TiO2(110) surfaces modified by defects and O2 or H2O adsorbates , 2004 .

[20]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[21]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[22]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[23]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[24]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[25]  Gang Xiong,et al.  Photoemission Electron Microscopy of TiO2 Anatase Films Embedded with Rutile Nanocrystals , 2007 .

[26]  Lirong Zheng,et al.  Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. , 2007, Inorganic chemistry.

[27]  Hyunjun Yoo,et al.  Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications† , 2008 .

[28]  Craig A Grimes,et al.  Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. , 2009, Nano letters.

[29]  E. Rabani,et al.  Electrostatic force microscopy study of single Au-CdSe hybrid nanodumbbells: evidence for light-induced charge separation. , 2009, Nano letters.

[30]  R. Beresford,et al.  Geometry- and size-dependence of electrical properties of metal contacts on semiconducting nanowires. , 2010 .

[31]  N. Marzari,et al.  Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays , 2010 .

[32]  Yun Jeong Hwang,et al.  Light-induced charge transport within a single asymmetric nanowire. , 2011, Nano letters.

[33]  Hyunjun Yoo,et al.  Lateral redistribution of trapped charges in nitride/oxide/Si (NOS) investigated by electrostatic force microscopy. , 2011, Nanoscale.

[34]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[35]  A. Mews,et al.  Laser-induced charge separation in CdSe nanowires. , 2011, Nano letters.

[36]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[37]  Seungbum Hong,et al.  Ambient effects on electric-field-induced local charge modification of TiO2 , 2012 .

[38]  K. No,et al.  Visualization of three dimensional domain structures in ferroelectric PbTiO3 nanotubes , 2013 .

[39]  H. Jung,et al.  Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties , 2013 .

[40]  T. Lian,et al.  Probing spatially dependent photoinduced charge transfer dynamics to TiO2 nanoparticles using single quantum dot modified atomic force microscopy tips. , 2013, Nano letters.

[41]  Adam P. Willard,et al.  Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. , 2013, Nature materials.

[42]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.