Tunable Trimers: Using Temperature and Pressure to Control Luminescent Emission in Gold(I) Pyrazolate-Based Trimers

A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au⋅⋅⋅Au interactions in a series of pyrazolate-based gold(I) trimers; tris(μ2-pyrazolato-N,N′)-tri-gold(I) (1), tris(μ2-3,4,5- trimethylpyrazolato-N,N′)-tri-gold(I) (2), tris(μ2-3-methyl-5-phenylpyrazolato-N,N′)-tri-gold(I) (3) and tris(μ2-3,5-diphenylpyrazolato-N,N′)-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au⋅⋅⋅Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au⋅⋅⋅Au contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au⋅⋅⋅Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm−1 per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au⋅⋅⋅Au distance observed by diffraction.

[1]  E. Tiekink Supramolecular assembly of molecular gold(I) compounds: An evaluation of the competition and complementarity between aurophilic (Au⋯Au) and conventional hydrogen bonding interactions , 2014 .

[2]  S. Teat,et al.  Hingeless Negative Linear Compression in the Mechanochromic Gold Complex [(C6F5Au)2(μ-1,4-diisocyanobenzene)]** , 2013, Angewandte Chemie.

[3]  A. J. Blake,et al.  Bowing to the pressure of π···π interactions: bending of phenyl rings in a palladium(II) thioether crown complex. , 2013, Angewandte Chemie.

[4]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[5]  J. Íñiguez,et al.  Anisotropic chemical pressure effects in single-component molecular metals based on radical dithiolene and diselenolene gold complexes. , 2012, Journal of the American Chemical Society.

[6]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[7]  Wei Li,et al.  Negative linear compressibility of a metal-organic framework. , 2012, Journal of the American Chemical Society.

[8]  Anita C Jones,et al.  Piezochromism in nickel salicylaldoximato complexes: tuning crystal-field splitting with high pressure. , 2012, Chemistry.

[9]  Andrew L. Goodwin,et al.  PASCal: a principal axis strain calculator for thermal expansion and compressibility determination , 2012, 1204.3007.

[10]  J. Howard,et al.  Structural origin of the gradual spin transition in a mononuclear iron(II) complex , 2012 .

[11]  M. Radtke,et al.  Pressure-Dependent Luminescence Properties of Gold(I) and Silver(I) Dithiocarbamate Compounds , 2012 .

[12]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[13]  W. Koźmiński,et al.  Polymorphism of a Model Arylboronic Azaester: Combined Experimental and Computational Studies , 2011 .

[14]  V. Nesterov,et al.  Structure and luminescence properties of a well-known macrometallocyclic trinuclear Au(I) complex and its adduct with a perfluorinated fluorophore showing cooperative anisotropic supramolecular interactions. , 2010, Dalton transactions.

[15]  D. Levendis,et al.  Searching for novel crystal forms by in situ high-pressure crystallisation: the example of gabapentin heptahydrate , 2010 .

[16]  Patricia R. Richardson,et al.  High-pressure polymorphism in salicylamide , 2010 .

[17]  Chick C. Wilson,et al.  Comparing entire crystal structures using cluster analysis and fingerprint plots , 2010 .

[18]  M. Sakata,et al.  High-pressure (up to 10.7 GPa) crystal structure of single-component molecular metal [Au(tmdt)2]. , 2009, Journal of the American Chemical Society.

[19]  N. Casati,et al.  Molecular crystals under high pressure: theoretical and experimental investigations of the solid-solid phase transitions in [Co2(CO)6(XPh3)2] (X = P, As). , 2009, Chemistry.

[20]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[21]  R. Raptis,et al.  Dinuclear gold(III) pyrazolato complexes – Synthesis, structural characterization and transformation to their trinuclear gold(I) and gold(I/III) analogues , 2009 .

[22]  Dylan Jayatilaka,et al.  Hirshfeld surface analysis , 2009 .

[23]  V. Yam,et al.  Highlights on the recent advances in gold chemistry--a photophysical perspective. , 2008, Chemical Society reviews.

[24]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[25]  P. Wood,et al.  High-pressure polymorphism in amino acids , 2008 .

[26]  S. Moggach,et al.  [Mn6] under pressure: a combined crystallographic and magnetic study. , 2008, Angewandte Chemie.

[27]  E. Pidcock,et al.  Analysis of the compression of molecular crystal structures using Hirshfeld surfaces , 2008 .

[28]  E. Pidcock,et al.  The anisotropic compression of the crystal structure of 3-aza-bicyclo(3.3.1)nonane-2,4-dione to 7.1 GPa , 2008 .

[29]  F. Mendizábal,et al.  Theoretical study on electronic spectra and aurophilic attraction in [Au-3(MeN=COMe)(3)](n) (n-1-4) complexes , 2007 .

[30]  M. Spackman,et al.  Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. , 2007, Chemical communications.

[31]  Chick C. Wilson,et al.  Comparing entire crystal structures: structural genetic fingerprinting , 2007 .

[32]  M. Spackman,et al.  Comparison of Polymorphic Molecular Crystal Structures through Hirshfeld Surface Analysis , 2007 .

[33]  A. Laguna,et al.  Tetrahydrothiophene)Gold(I) or Gold(III) Complexes , 2007 .

[34]  D. Allan,et al.  Exploration of the high-pressure behaviour of polycyclic aromatic hydrocarbons: naphthalene, phenanthrene and pyrene. , 2006, Acta crystallographica. Section B, Structural science.

[35]  W. G. Marshall,et al.  High-pressure neutron diffraction study of L-serine-I and L-serine-II, and the structure of L-serine-III at 8.1 GPa. , 2006, Acta crystallographica. Section B, Structural science.

[36]  M. Messerschmidt,et al.  Trinuclear gold(I) triazolates: a new class of wide-band phosphors and sensors. , 2006, Inorganic chemistry.

[37]  Kechen Wu,et al.  Ab initio study on luminescent properties of triangular Au(I) complexes , 2006 .

[38]  T. Cundari,et al.  Metal effect on the supramolecular structure, photophysics, and acid-base character of trinuclear pyrazolato coinage metal complexes. , 2005, Inorganic chemistry.

[39]  J. Fettinger,et al.  A reversible polymorphic phase change which affects the luminescence and aurophilic interactions in the gold (I) cluster complex, [mu3-S(AuCNC7H13)3](SbF6). , 2005, Journal of the American Chemical Society.

[40]  Saeed Attar,et al.  Intermolecular interactions in polymorphs of trinuclear gold(I) complexes: insight into the solvoluminescence of Au(I)3(MeN=COMe)3. , 2005, Inorganic chemistry.

[41]  A. Kovalevsky,et al.  Shedding light on the structure of a photoinduced transient excimer by time-resolved diffraction. , 2005, Physical review letters.

[42]  T. Aida,et al.  Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. , 2005, Journal of the American Chemical Society.

[43]  M. Spackman,et al.  Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.

[44]  R. Hemley,et al.  High pressure study of Ru3(CO)12 by X-ray diffraction, Raman, and infrared spectroscopy. , 2004, Inorganic chemistry.

[45]  D. Allan,et al.  Use of a CCD diffractometer in crystal structure determinations at high pressure , 2004 .

[46]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[47]  R. Raptis,et al.  Supramolecular assembly of trimeric gold(I) pyrazolates through aurophilic attractions. , 2003, Inorganic chemistry.

[48]  R. Raptis,et al.  Oxidation of gold(I) pyrazolates by aqua regia. X-Ray crystal structures of the first examples of trinuclear AuIII3 and AuIAuIII2 pyrazolato complexes , 2002 .

[49]  M. Spackman,et al.  Fingerprinting intermolecular interactions in molecular crystals , 2002 .

[50]  A. Hayashi,et al.  Crystal chemistry of the gold (I) trimer, Au(3)(NC(5)H(4))(3): formation of hourglass figures and self-association through aurophilic attraction. , 2002, Journal of the American Chemical Society.

[51]  Leonard J. Barbour,et al.  X-Seed — A Software Tool for Supramolecular Crystallography , 2001 .

[52]  F. Jiang,et al.  Alteration of the aurophilic interactions in trimeric gold(I) compounds through charge transfer. Behavior of solvoluminescent Au(3)(MeN=COMe)(3) in the presence of electron acceptors. , 2001, Journal of the American Chemical Society.

[53]  R. Galassi,et al.  Luminescent Chains Formed from Neutral, Triangular Gold Complexes Sandwiching TlI and AgI. Structures of {Ag([Au(μ-C2,N3-bzim)]3)2}BF4·CH2Cl2, {Tl([Au(μ-C2,N3-bzim)]3)2}PF6·0.5THF (bzim = 1-Benzylimidazolate), and {Tl([Au(μ-C(OEt)═NC6H4CH3)]3)2}PF6·THF, with MAu6 (M = Ag+, Tl+) Cluster Cores. , 2000, Inorganic chemistry.

[54]  Hubert Schmidbaur,et al.  The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications , 2000 .

[55]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[56]  M. Spackman,et al.  Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals , 1998 .

[57]  H. Patterson,et al.  Effect of high pressure on the emission spectrum of single crystals of Tl[Au(CN)2] , 1998 .

[58]  W. Zin,et al.  Trinuclear gold(I) pyrazolate complexes exhibiting hexagonal columnar mesophases with only three side chains , 1998 .

[59]  A. Balch,et al.  GLOWING GOLD RINGS : SOLVOLUMINESCENCE FROM PLANAR TRIGOLD(I) COMPLEXES , 1998 .

[60]  P. Fischer,et al.  Pressure Dependence Investigation of the Low-Temperature Structure of TlAu(CN)(2) by High-Resolution Neutron Powder Diffraction and Optical Studies. , 1997, Inorganic chemistry.

[61]  A. Balch,et al.  Solvent‐Stimulated Luminescence from the Supramolecular Aggregation of a Trinuclear Gold(I) Complex that Displays Extensive Intermolecular AuċAu Interactions , 1997 .

[62]  A. L. Balch,et al.  Solvensstimulierte Lumineszenz eines supramolekular assoziierten dreikernigen Gold(I)-Komplexes mit starken intermolekularen Au-Au-Wechselwirkungen† , 1997 .

[63]  P. G. Byrom,et al.  A novel definition of a molecule in a crystal , 1997 .

[64]  H. Yersin,et al.  Extreme Pressure-Induced Shifts of Emission Energies in M[Au(CN)2] and M2[Pt(CN)4].cntdot.nH2O. Compounds with Low-Dimensional and Metal-Metal Interactions , 1995 .

[65]  Stanley Block,et al.  Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar , 1975 .

[66]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[67]  L. Barbour,et al.  A simple and robust method for the identification of π–π packing motifs of aromatic compounds , 2012 .

[68]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[69]  R. Angel Equations of State , 2000 .

[70]  R. Galassi,et al.  The first sandwich silver cluster of a trinuclear cyclic gold(I) complex , 1998 .

[71]  R. Raptis,et al.  Syntheses and x-ray structures of group 11 pyrazole and pyrazolate complexes. X-ray crystal structures of bis(3,5-diphenylpyrazole)copper(II) dibromide, tris(.mu.-3,5-diphenylpyrazolato-N,N')trisilver(I)-2-tetrahydrofuran, tris(.mu.-3,5-diphenylpyrazolato-N,N')trigold(I), and hexakis(.mu.-3,5-diphen , 1988 .