Isomorphism for Graphs of Bounded Feedback Vertex Set Number

This paper presents an ${\mathcal O}(n^2)$ algorithm for deciding isomorphism of graphs that have bounded feedback vertex set number. This number is defined as the minimum number of vertex deletions required to obtain a forest. Our result implies that Graph Isomorphism is fixed-parameter tractable with respect to the feedback vertex set number. Central to the algorithm is a new technique consisting of an application of reduction rules that produce an isomorphism-invariant outcome, interleaved with the creation of increasingly large partial isomorphisms.

[1]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[2]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[3]  John E. Hopcroft,et al.  Polynomial-time algorithms for permutation groups , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[4]  Sergei Evdokimov,et al.  Isomorphism of Coloured Graphs with Slowly Increasing Multiplicity of Jordan Blocks , 1995, Comb..

[5]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[6]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[7]  Joseph Naor,et al.  An 8-approximation algorithm for the subset feedback vertex set problem , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[8]  Leizhen Cai,et al.  Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties , 1996, Inf. Process. Lett..

[9]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[10]  Gerhard Reinelt,et al.  A Polyhedral Approach to the Feedback Vertex Set Problem , 1996, IPCO.

[11]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[12]  Henning Fernau,et al.  Parameterized algorithms for d-Hitting Set: The weighted case , 2006, Theor. Comput. Sci..

[13]  I. Ponomarenko The isomorphism problem for classes of graphs closed under contraction , 1991 .

[14]  László Babai,et al.  Moderately Exponential Bound for Graph Isomorphism , 1981, FCT.

[15]  Robert E. Tarjan,et al.  A V² Algorithm for Determining Isomorphism of Planar Graphs , 1971, Inf. Process. Lett..

[16]  Michael R. Fellows,et al.  What Makes Equitable Connected Partition Easy , 2009, IWPEC.

[17]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2008, J. Comput. Syst. Sci..

[18]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[19]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.

[20]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[21]  Koichi Yamazaki,et al.  Isomorphism for Graphs of Bounded Distance Width , 1997, Algorithmica.

[22]  Bruce A. Reed,et al.  A Simpler Linear Time Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Seinosuke Toda Computing Automorphism Groups of Chordal Graphs Whose Simplicial Components Are of Small Size , 2006, IEICE Trans. Inf. Syst..

[24]  Uwe Schning GRAPH ISOMORPHISM IS IN THE LOW HIERARCHY , 2022 .

[25]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Ryuhei Uehara,et al.  Graph isomorphism completeness for chordal bipartite graphs and strongly chordal graphs , 2005, Discret. Appl. Math..

[28]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[29]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[30]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[31]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.