Can seismology tell us anything about convection in the mantle

The understanding of mantle convection is one of the most puzzling problems of modern geophysics. Among the different approaches used by geophysicists to investigate mantle convection, seismic tomography is the only one able to visualize, at the same time, temperature, petrological anomalies, and flow directions from seismic velocity and anisotropy heterogeneities. In order to enable a comparison with other geophysical observables, tomographic models are expanded into spherical harmonics. Most tomographic models agree that down to 300–400 km, deep structure is closely related to plate tectonics and continental distribution. Its corresponding spectral content regularly decreases with decreasing wavelength. At greater depths in the transition zone, degree 2 and (to a lesser extent) degree 6 distributions become predominant. A degree 2 pattern is also present in the lower mantle and is strongly correlated with the geoid but offset with respect to the degree 2 pattern of the transition zone. A simple flow pattern with two upgoing and two downgoing large-scale flows can be invoked to simply explain the predominance of degrees 2 and 6 for seismic velocity and degree 4 for radial anisotropy. Therefore below the apparent complexity of plate tectonics, it turns out that mantle convection is surprisingly simply organized in the transition zone. Between 400 and 1000 km, these large-scale flows are not independent from the circulation in the first 400 km but are connected to some of the most tectonically active zones (fast ridges and slabs). It is also suggested that the degree 6 which seems to be a marker of the hotspot distribution is not independent of the deep degree 2 but might be the consequence of this simple flow pattern. The good correlation between seismic tomography degree 6 and hotspot degree 6 favors an origin at depth of hotspots in the transition zone. Generally, the mantle cannot be divided into independent convecting cells but is characterized by imbricated convection, where different scales coexist and where exchange of matter is possible. Therefore seismic tomography is able to provide very strong constraints on possible models of mantle convection, but many features are still unexplained. Only very long spatial wavelengths are well resolved so far, and a complete understanding of mantle dynamics necessitates relating the different scales present in convective processes.

[1]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[2]  Bradford H. Hager,et al.  Large‐scale heterogeneities in the lower mantle , 1977 .

[3]  Guust Nolet,et al.  Tomographic imaging of subducted lithosphere below northwest Pacific island arcs , 1991, Nature.

[4]  B. Romanowicz,et al.  3-D upper mantle shear velocity and attenuation from fundamental mode free oscillation data , 1990 .

[5]  D. L. Anderson,et al.  Uppermantle anisotropy and the oceanic lithosphere , 1983 .

[6]  H. Nataf,et al.  Vectorial tomography—I. Theory , 1988 .

[7]  Thomas H. Jordan,et al.  Present‐day plate motions , 1977 .

[8]  C. Vigny,et al.  Mantle dynamics with induced plate tectonics , 1989 .

[9]  D. Yuen,et al.  Layered convection induced by phase transitions , 1985 .

[10]  B. Hager,et al.  The earth's geoid and the large-scale structure of mantle convection , 1988 .

[11]  Robert L. Woodward,et al.  Global upper mantle structure from long-period differential travel times , 1991 .

[12]  L. Knopoff,et al.  Dispersion of very long‐period rayleigh waves along the East Pacific Rise: Evidence for S wave velocity anomalies to 450 km depth , 1982 .

[13]  W. Peltier Mantle convection : plate tectonics and global dynamics , 1989 .

[14]  J. Tuzo Wilson A possible origin of the Hawaiian Islands , 1963 .

[15]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[16]  J. Besse,et al.  Magnetic Field Reversals, Polar Wander, and Core-Mantle Coupling , 1987, Science.

[17]  G. Backus,et al.  Numerical Applications of a Formalism for Geophysical Inverse Problems , 1967 .

[18]  A. Holmes,et al.  Radioactivity and Earth Movements. , 1931, Nature.

[19]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[20]  Wei-jia Su,et al.  Predominance of long-wavelength heterogeneity in the mantle , 1991, Nature.

[21]  F. A. Dahlen,et al.  The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium , 1973 .

[22]  R. Clayton,et al.  P and S wave travel time inversions for subducting slab under the island arcs of the northwest Pacific , 1990 .

[23]  H. Nataf Mantle convection, plates, and hotspots , 1991 .

[24]  Don L. Anderson,et al.  Mineralogy and composition of the upper mantle , 1984 .

[25]  P. Silver,et al.  Deep Slabs, Geochemical Heterogeneity, and the Large-Scale Structure of Mantle Convection: Investigation of an Enduring Paradox , 1988 .

[26]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[27]  J. Peirce,et al.  An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121 , 1992 .

[28]  W. Peltier,et al.  Mantle phase transitions and layered chaotic convection , 1992 .

[29]  Toshiro Tanimoto,et al.  Predominance of Large-Scale Heterogeneity and the Shift of Velocity Anomalies between the Upper and Lower Mantle , 1990 .

[30]  D. L. Anderson,et al.  Transition region of the Earth's upper mantle , 1986, Nature.

[31]  H. Kawakatsu Can ‘pure‐path’ models explain free oscillation data? , 1983 .

[32]  Don L. Anderson,et al.  Anisotropy and shear-velocity heterogeneities in the upper mantle , 1984 .

[33]  T. Lay,et al.  A lower mantle S-wave triplication and the shear velocity structure of D" , 1983 .

[34]  Donald L. Turcotte,et al.  Finite amplitude convective cells and continental drift , 1967, Journal of Fluid Mechanics.

[35]  T. Jordan,et al.  Slab penetration into the lower mantle , 1984 .

[36]  Duncan Carr Agnew,et al.  International deployment of accelerometers: A network for very long period seismology , 1976 .

[37]  J. Tromp,et al.  Free oscillations of a spherical anelastic earth , 1990 .

[38]  M. McElhinny,et al.  A plate-tectonic speed limit? , 1993, Nature.

[39]  T. Tanimoto The three-dimensional shear wave structure in the mantle by overtone waveform inversion - I. Radial seismogram inversion , 1987 .

[40]  T. Tanimoto The Backus–Gilbert approach to the 3-D structure in the upper mantle – II. SH and SV velocity , 1986 .

[41]  Donald W. Forsyth,et al.  On the Relative Importance of the Driving Forces of Plate Motion , 1975 .

[42]  T. Jordan,et al.  Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific , 1986 .

[43]  Albert Tarantola,et al.  Three‐dimensional inversion without blocks , 1984 .

[44]  Donald W. Forsyth The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle , 1975 .

[45]  C. Doglioni,et al.  Differential Rotation Between Lithosphere and Mantle' A Consequence of Lateral Mantle Viscosity Variations , 1991 .

[46]  C. R. Hutt,et al.  The Seismic Research Observatory , 1976, Bulletin of the Seismological Society of America.

[47]  James J. Simpson,et al.  A simple model of the 1982‐83 Californian "El Nino" , 1984 .

[48]  T. Tanimoto,et al.  Global Love wave phase velocity variation and its significance to plate tectonics , 1991 .

[49]  T. Tanimoto,et al.  Global anisotropy in the upper mantle inferred from the regionalization of phase velocities , 1990 .

[50]  David J. Stevenson,et al.  Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle , 1993, Nature.

[51]  F. Dahlen Multiplet coupling and the calculation of synthetic long-period seismograms , 1987 .

[52]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[53]  J. Woodhouse,et al.  Constraining Upper Mantle Anelasticity Using Surface Wave Amplitude Anomalies , 1993 .

[54]  Don L. Anderson,et al.  Composition of the upper mantle: Geophysical tests of two petrological models , 1984 .

[55]  D. Giardini,et al.  The relative amplitudes of mantle heterogeneity in P velocity, S velocity and density from free-oscillation data , 1991 .

[56]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. II - Analysis by the single-station method , 1984 .

[57]  B. Romanowicz,et al.  Modelling of coupled normal modes of the Earth: the spectral method , 1990 .

[58]  B. Romanowicz The upper mantle degree 2: Constraints and inferences from global mantle wave attenuation measurements , 1990 .

[59]  D. L. Anderson,et al.  Constrained reference mantle model , 1989 .

[60]  B. Hager,et al.  Kinematic models of large‐scale flow in the Earth's mantle , 1979 .

[61]  D. Yuen,et al.  The interaction of a subducting lithospheric slab with a chemical or phase boundary , 1984 .

[62]  M. Cara,et al.  Anisotropy of the asthenosphere: The higher mode data of the Pacific revisited , 1988 .

[63]  The upper mantle degree two pattern: Constraints from geoscope fundamental spheroidal mode eigenfrequency and attenuation measurements , 1987 .

[64]  J. Tuzo Wilson,et al.  Evidence from ocean islands suggesting movement in the Earth , 1965 .

[65]  D. L. Anderson,et al.  Modeling of residual spheres for subduction zone earthquakes: 1. Apparent slab penetration signatures in the NW Pacific caused by deep diffuse mantle anomalies , 1990 .

[66]  Hua-Wei Zhou How well can we resolve the deep seismic slab with seismic tomography , 1988 .

[67]  J. Montagner 3‐dimensional structure of the Indian Ocean inferred from long period surface waves , 1986 .

[68]  M. N. Toksöz,et al.  Three dimensional model of seismic velocity variation in the Earth's mantle , 1976 .

[69]  Robert Pillet,et al.  The GEOSCOPE program: Present status and perspectives , 1991, Bulletin of the Seismological Society of America.

[70]  T. Tanimoto The 3-D shear wave structure in the mantle by overtone waveform inversion-II. Inversion of X-waves, R-waves and G-waves , 1988 .

[71]  Peter M. Shearer,et al.  Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity , 1990, Nature.

[72]  Thomas H. Jordan,et al.  Aspherical Earth structure from fundamental spheroidal-mode data , 1982, Nature.

[73]  T. Tanimoto The Backus—Gilbert approach to the three-dimensional structure in the upper mantle — I. Lateral variation of surface wave phase velocity with its error and resolution , 1985 .

[74]  R. Geller,et al.  Coupling between the multiplets of laterally heterogeneous earth models , 1989 .

[75]  G. Schubert,et al.  MODAL GROWTH AND COUPLING IN THREE-DIMENSIONAL SPHERICAL CONVECTION , 1991 .

[76]  C. Pekeris Thermal Convection in the Interior of the Earth , 1935 .

[77]  Yosihiko Ogata,et al.  Whole mantle P-wave travel time tomography , 1990 .

[78]  T. Jordan,et al.  Mantle layering from ScS reverberations: 1. Waveform inversion of zeroth-order reverberations , 1991 .

[79]  H. Melosh,et al.  Ridge migration and asymmetric sea-floor spreading , 1977 .

[80]  Barbara Romanowicz,et al.  Toward a federation of broadband seismic networks , 1986 .

[81]  S. Weinstein Catastrophic overturn of the Earth's mantle driven by multiple phase changes and internal heat generation , 1993 .

[82]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[83]  T. Jordan The continental tectosphere , 1975 .

[84]  A. Holmes,et al.  XVIII. Radioactivity and Earth Movements , 1931, Transactions of the Glasgow Geological Society.

[85]  T. Tanimoto Long-wavelength S-wave velocity structure throughout the mantle , 1990 .

[86]  D. L. Anderson,et al.  Mapping convection in the mantle , 1984 .

[87]  Masayuki Obayashi,et al.  Subducting slabs stagnant in the mantle transition zone , 1992 .

[88]  Don L. Anderson,et al.  Thermally Induced Phase Changes, Lateral Heterogeneity of the Mantle, Continental Roots, and Deep Slab Anomalies , 1987 .

[89]  Jeffrey Park Asymptotic coupled-mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical earth , 1987 .

[90]  T. Jordan,et al.  Mantle layering from ScS reverberations: 4. The lower mantle and core-mantle boundary , 1991 .

[91]  A. Ringwood Composition and petrology of the earth's mantle , 1975 .

[92]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[93]  J. Woodhouse,et al.  Amplitude, phase and path anomalies of mantle waves , 1986 .

[94]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[95]  P. Lognonné Normal modes and seismograms in an anelastic rotating Earth , 1991 .

[96]  Wei-jia Su,et al.  On the scale of mantle heterogeneity , 1992 .

[97]  Francis J. Lerch,et al.  Gravity model improvement using GEOS 3 /GEM 9 and 10/. [and Seasat altimetry data] , 1977 .

[98]  K. Hirahara,et al.  How deep can we see the high velocity anomalies beneath the Japan Islands , 1988 .

[99]  J. Montagner,et al.  Vectorial tomography—II. Application to the Indian Ocean , 1988 .

[100]  Bruce J. Douglas,et al.  Upper mantle anisotropy: A preliminary model , 1986 .

[101]  D. Giardini,et al.  Deep seismicity and modes of deformation in Tonga subduction zone , 1984, Nature.

[102]  J. Montagner Regional three-dimensional structures using long-period surface waves , 1986 .

[103]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[104]  S. Weinstein Induced compositional layering in a convecting fluid layer by an endothermic phase transition , 1992 .

[105]  C. Froidevaux,et al.  Global plate motion and the geoid: a physical model , 1988 .

[106]  H. Nataf,et al.  A simple method for inverting the azimuthal anisotropy of surface waves , 1986 .

[107]  B. Romanowicz,et al.  Degrees 2, 4, 6 inferred from seismic tomography , 1993 .

[108]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[109]  D. Yuen,et al.  Penetrative convective flows induced by internal heating and mantle compressibility , 1989 .

[110]  Don L. Anderson,et al.  The deep structure of continents , 1979 .

[111]  A. Leeds Lithospheric thickness in the western Pacific , 1975 .

[112]  D. L. Anderson,et al.  Upper mantle anisotropy - Evidence from free oscillations , 1982 .

[113]  R. Jeanloz Effects of phase transions and possible compositional changes on the seismological structure near 650 km depth , 1991 .

[114]  Patrice Weber,et al.  Intermittent layered convection in a model mantle with an endothermic phase change at 670 km , 1991, Nature.

[115]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[116]  L. Vinnik,et al.  Azimuthal anisotropy in the lithosphere from observations of long-period S-waves , 1989 .

[117]  K. Creager,et al.  The geometry of Aleutian subduction: Three-dimensional seismic imaging , 1991 .

[118]  G. Masters,et al.  Lower-mantle structure from ScS–S differential travel times , 1991, Nature.

[119]  Don L. Anderson,et al.  Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s , 1985 .

[120]  G. Nolet Partitioned waveform inversion and two‐dimensional structure under the network of autonomously recording seismographs , 1990 .

[121]  Jeffrey Park,et al.  The subspace projection method for constructing coupled-mode synthetic seismograms , 1990 .

[122]  G. Masters,et al.  Aspherical structure constraints from free oscillation frequency and attenuation measurements , 1989 .

[123]  A. Dziewoński,et al.  Deep origin of mid-ocean-ridge seismic velocity anomalies , 1992, Nature.

[124]  Toshiro Tanimoto,et al.  High-resolution global upper mantle structure and plate tectonics , 1993 .

[125]  A. Dziewoński,et al.  Seismic modelling of the Earth’s large-scale three-dimensional structure , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[126]  G. Schubert,et al.  Influence of heating mode on three-dimensional mantle convection , 1989 .

[127]  Anny Cazenave,et al.  Global coupling of Earth surface topography with hotspots, geoid and mantle heterogeneities , 1989, Nature.

[128]  Michael Gurnis,et al.  Large-scale mantle convection and the aggregation and dispersal of supercontinents , 1988, Nature.

[129]  T. Jordan,et al.  Numerical Modelling of Instantaneous Plate Tectonics , 1974 .

[130]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[131]  Filip Neele,et al.  The effect of small‐scale structure on normal mode frequencies and global inversions , 1991 .

[132]  T. Jordan Continents as a chemical boundary layer , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.