Analysis-suitable T-splines: characterization, refineability, and approximation

We establish several fundamental properties of analysis-suitable T-splines which are important for design and analysis. First, we characterize T-spline spaces and prove that the space of smooth bicubic polynomials, defined over the extended T-mesh of an analysis-suitable T-spline, is contained in the corresponding analysis-suitable T-spline space. This is accomplished through the theory of perturbed analysis-suitable T-spline spaces and a simple topological dimension formula. Second, we establish the theory of analysis-suitable local refinement and describe the conditions under which two analysis-suitable T-spline spaces are nested. Last, we demonstrate that these results can be used to establish basic approximation results which are critical for analysis.

[1]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[2]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[3]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[4]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[5]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[6]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[7]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[8]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[9]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[10]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[11]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[12]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[13]  L. Beirão da Veiga,et al.  Analysis-suitable T-splines of arbitrary degree : definition and properties , 2012 .

[14]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[15]  Heather Ipson,et al.  T-spline Merging , 2005 .

[16]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[17]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[20]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[21]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[22]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[23]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[24]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[25]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .