Comparison of Quasi-Monte Carlo-Based Methods for Simulation of Markov Chains

Monte Carlo (MC) method is probably the most widespread simulation technique due to its ease of use. Quasi-Monte Carlo (QMC) methods have been designed in order to speed up the convergence rate of MC but their implementation requires more stringent assumptions. For instance, the direct QMC simulation of Markov chains is inefficient due to the correlation of the points used. We propose here to survey the QMC-based methods that have been developed to tackle the QMC simulation of Markov chains. Most of those methods were hybrid MC/QMC methods. We compare them with a recently developped pure QMC method and illustrate the better convergence speed of the latter.

[1]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[2]  Bruno Tuffin,et al.  Quasi-Monte Carlo Methods for Estimating Transient Measures of Discrete Time Markov Chains , 2004 .

[3]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[4]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[5]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[6]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[7]  Jerome Spanier,et al.  Quasi-Monte Carlo Methods for Particle Transport Problems , 1995 .

[8]  Giray Ökten,et al.  A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..

[9]  Russel E. Caflisch,et al.  A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .

[10]  Christian Lécot,et al.  Quasi-random Simulation of Linear Kinetic Equations , 2001, J. Complex..

[11]  Shigeyoshi Ogawa,et al.  A quasi-random walk method for one-dimensional reaction-diffusion equations , 2003, Math. Comput. Simul..

[12]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  Liming Li,et al.  Quasi-Monte Carlo Methods for Integral Equations , 1998 .

[14]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[15]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[16]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .

[17]  I. A. Antonov,et al.  An economic method of computing LPτ-sequences , 1979 .

[18]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .