Comparison of Quasi-Monte Carlo-Based Methods for Simulation of Markov Chains
暂无分享,去创建一个
[1] I. Sobol. Uniformly distributed sequences with an additional uniform property , 1976 .
[2] Bruno Tuffin,et al. Quasi-Monte Carlo Methods for Estimating Transient Measures of Discrete Time Markov Chains , 2004 .
[3] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[4] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[5] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[6] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[7] Jerome Spanier,et al. Quasi-Monte Carlo Methods for Particle Transport Problems , 1995 .
[8] Giray Ökten,et al. A Probabilistic Result on the Discrepancy of a Hybrid-Monte Carlo Sequence and Applications , 1996, Monte Carlo Methods Appl..
[9] Russel E. Caflisch,et al. A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .
[10] Christian Lécot,et al. Quasi-random Simulation of Linear Kinetic Equations , 2001, J. Complex..
[11] Shigeyoshi Ogawa,et al. A quasi-random walk method for one-dimensional reaction-diffusion equations , 2003, Math. Comput. Simul..
[12] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[13] Liming Li,et al. Quasi-Monte Carlo Methods for Integral Equations , 1998 .
[14] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[15] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[16] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[17] I. A. Antonov,et al. An economic method of computing LPτ-sequences , 1979 .
[18] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .