Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain
暂无分享,去创建一个
P. Paiva | M. A. de Morais | F. Leite | E. Vidal | Raquel de Fátima Rodrigues de Souza | Alexandre Libanio Silva Reis | Rochane Regina Neves Baptista Torres
[1] A. K. Gombert,et al. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. , 2013, FEMS yeast research.
[2] T. Jeffries,et al. Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum , 2012, Applied and Environmental Microbiology.
[3] M. Carazzolle,et al. The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase , 2012, World journal of microbiology & biotechnology.
[4] S. R. Ceccato-Antonini,et al. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae , 2012, Antonie van Leeuwenhoek.
[5] J. Piškur,et al. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions , 2011, Journal of Industrial Microbiology & Biotechnology.
[6] J. Schnürer,et al. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis , 2011, Letters in applied microbiology.
[7] C. Rosa,et al. Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest , 2011, Antonie van Leeuwenhoek.
[8] Masafumi Hidaka,et al. Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. , 2010, The Biochemical journal.
[9] J. Schnürer,et al. Fermentation characteristics of Dekkera bruxellensis strains , 2010, Applied Microbiology and Biotechnology.
[10] Garcia Alvarado Yahara,et al. Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions , 2007, Bioprocess and biosystems engineering.
[11] J. Schnürer,et al. Dekkera bruxellensis and Lactobacillus vini Form a Stable Ethanol-Producing Consortium in a Commercial Alcohol Production Process , 2007, Applied and Environmental Microbiology.
[12] J. De Morais,et al. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation , 2007, Journal of applied microbiology.
[13] J. De Morais,et al. Contaminant yeast detection in industrial ethanol fermentation must by rDNA‐PCR , 2005, Letters in applied microbiology.
[14] C. Wyman,et al. Evaluation of the cellobiose-fermenting yeastBrettanomyces custersii in the simultaneous saccharification and fermentation of cellulose , 1992, Biotechnology Letters.
[15] Johannes P. van Dijken,et al. Redox balances in the metabolism of sugars by yeasts (NAD(H); NADP(H); glucose metabolism; xylose fermentation; ethanol; Crabtree effect; Custers effect) , 1986 .
[16] W. A. Scheffers,et al. Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect) , 1984, Antonie van Leeuwenhoek.
[17] A. Arnaud,et al. A study of cellobiose fermentation by a Dekkera strain , 1982, Biotechnology and bioengineering.
[18] W. A. Scheffers. Anaerobic inhibition in yeasts (Custers effect) , 1979, Antonie van Leeuwenhoek.
[19] M. Cotta,et al. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. , 2012, Bioresource technology.
[20] Carlos Alberto Vieira de Azevedo,et al. A New Version Of The Assistant- Statistical Assistance Software , 2006 .
[21] H. Gerós,et al. Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. , 2000 .