Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain

[1]  A. K. Gombert,et al.  Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. , 2013, FEMS yeast research.

[2]  T. Jeffries,et al.  Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum , 2012, Applied and Environmental Microbiology.

[3]  M. Carazzolle,et al.  The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase , 2012, World journal of microbiology & biotechnology.

[4]  S. R. Ceccato-Antonini,et al.  The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae , 2012, Antonie van Leeuwenhoek.

[5]  J. Piškur,et al.  Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions , 2011, Journal of Industrial Microbiology & Biotechnology.

[6]  J. Schnürer,et al.  Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis , 2011, Letters in applied microbiology.

[7]  C. Rosa,et al.  Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest , 2011, Antonie van Leeuwenhoek.

[8]  Masafumi Hidaka,et al.  Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. , 2010, The Biochemical journal.

[9]  J. Schnürer,et al.  Fermentation characteristics of Dekkera bruxellensis strains , 2010, Applied Microbiology and Biotechnology.

[10]  Garcia Alvarado Yahara,et al.  Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions , 2007, Bioprocess and biosystems engineering.

[11]  J. Schnürer,et al.  Dekkera bruxellensis and Lactobacillus vini Form a Stable Ethanol-Producing Consortium in a Commercial Alcohol Production Process , 2007, Applied and Environmental Microbiology.

[12]  J. De Morais,et al.  Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation , 2007, Journal of applied microbiology.

[13]  J. De Morais,et al.  Contaminant yeast detection in industrial ethanol fermentation must by rDNA‐PCR , 2005, Letters in applied microbiology.

[14]  C. Wyman,et al.  Evaluation of the cellobiose-fermenting yeastBrettanomyces custersii in the simultaneous saccharification and fermentation of cellulose , 1992, Biotechnology Letters.

[15]  Johannes P. van Dijken,et al.  Redox balances in the metabolism of sugars by yeasts (NAD(H); NADP(H); glucose metabolism; xylose fermentation; ethanol; Crabtree effect; Custers effect) , 1986 .

[16]  W. A. Scheffers,et al.  Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect) , 1984, Antonie van Leeuwenhoek.

[17]  A. Arnaud,et al.  A study of cellobiose fermentation by a Dekkera strain , 1982, Biotechnology and bioengineering.

[18]  W. A. Scheffers Anaerobic inhibition in yeasts (Custers effect) , 1979, Antonie van Leeuwenhoek.

[19]  M. Cotta,et al.  A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. , 2012, Bioresource technology.

[20]  Carlos Alberto Vieira de Azevedo,et al.  A New Version Of The Assistant- Statistical Assistance Software , 2006 .

[21]  H. Gerós,et al.  Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. , 2000 .