On Discrete Killing Vector Fields and Patterns on Surfaces
暂无分享,去创建一个
Leonidas J. Guibas | Mirela Ben-Chen | Justin Solomon | Adrian Butscher | J. Solomon | M. Ben-Chen | L. Guibas | Adrian Butscher | L. Guibas
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] S. Myers. Isometries of 2-Dimensional Riemannian Manifolds into Themselves. , 1936, Proceedings of the National Academy of Sciences of the United States of America.
[3] K. Yano. On Harmonic and Killing Vector Fields , 1952 .
[4] R. Matzner. Almost symmetric spaces and gravitational radiation. , 1968 .
[5] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[6] D. Raine. General relativity , 1980, Nature.
[7] R. Zalaletdinov. Approximate Symmetries in General Relativity , 1999, gr-qc/9912021.
[8] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[9] G. Hall. Symmetries and Curvature Structure in General Relativity , 2004 .
[10] Kun Zhou,et al. Mesh quilting for geometric texture synthesis , 2006, ACM Trans. Graph..
[11] N. Mitra,et al. Partial and approximate symmetry detection for 3D geometry , 2006, ACM Transactions on Graphics.
[12] Kun Zhou,et al. Mesh quilting for geometric texture synthesis , 2006, SIGGRAPH 2006.
[13] Leonidas J. Guibas,et al. Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..
[14] Hugues Hoppe,et al. Design of tangent vector fields , 2007, SIGGRAPH 2007.
[15] M. Kilian,et al. Geometric modeling in shape space , 2007, SIGGRAPH 2007.
[16] Yanxi Liu,et al. Performance evaluation of state-of-the-art discrete symmetry detection algorithms , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[17] Leonidas J. Guibas,et al. Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.
[18] C. Beetle. Approximate Killing Fields as an Eigenvalue Problem , 2008, 0808.1745.
[19] Leonidas J. Guibas,et al. Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..
[20] Ligang Liu,et al. Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..
[21] Hans-Peter Seidel,et al. Symmetry Detection Using Feature Lines , 2009, Comput. Graph. Forum.
[22] Thomas Müller,et al. Eurographics/ Ieee-vgtc Symposium on Visualization 2009 the Gödel Engine -an Interactive Approach to Visualization in General Relativity , 2022 .
[23] Kai Xu,et al. Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.
[24] Hans-Peter Seidel,et al. A probabilistic framework for partial intrinsic symmetries in geometric data , 2009, 2009 IEEE 12th International Conference on Computer Vision.
[25] Hans-Peter Seidel,et al. Symmetry Detection Using Line Features , 2009 .
[26] E. Akleman,et al. Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems , 2009, SIGGRAPH '09.
[27] Ergun Akleman,et al. Cyclic Plain-Weaving on Polygonal Mesh Surfaces with Extended Graph Rotation Systems , 2009 .
[28] Craig S. Kaplan,et al. Semiregular patterns on surfaces , 2009, NPAR '09.
[29] Alexander M. Bronstein,et al. Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.
[30] Eugene Zhang,et al. Geometry Synthesis on Surfaces Using Field-Guided Shape Grammars , 2011, IEEE Transactions on Visualization and Computer Graphics.