Definability of Combinatorial Functions and Their Linear Recurrence Relations

We consider functions of natural numbers which allow a combinatorial interpretation as counting functions (speed) of classes of relational structures, such as Fibonacci numbers, Bell numbers, Catalan numbers and the like. Many of these functions satisfy a linear recurrence relation over Z or Zm and allow an interpretation as counting the number of relations satisfying a property expressible in Monadic Second Order Logic (MSOL). C. Blatter and E. Specker (1981) showed that if such a function f counts the number of binary relations satisfying a property expressible in MSOL then f satisfies for every m ∈ N a linear recurrence relation over Zm. In this paper we give a complete characterization in terms of definability in MSOL of the combinatorial functions which satisfy a linear recurrence relation over Z, and discuss various extensions and limitations of the Specker-Blatter theorem.

[1]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[2]  Béla Bollobás,et al.  The Penultimate Rate of Growth for Graph Properties , 2001, Eur. J. Comb..

[3]  Matti Soittola,et al.  Positive Rational Sequences , 1976, Theor. Comput. Sci..

[4]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[5]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[6]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[7]  Leonid Libkin,et al.  Elements Of Finite Model Theory (Texts in Theoretical Computer Science. An Eatcs Series) , 2004 .

[8]  H. Bateman,et al.  The Polynomial of Mittag-Leffler. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[10]  Jörg Flum,et al.  Mathematical logic (2. ed.) , 1994, Undergraduate texts in mathematics.

[11]  Hans Jürgen Prömel,et al.  Excluding Induced Subgraphs: Quadrilaterals , 1991, Random Struct. Algorithms.

[12]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[13]  Eldar Fischer,et al.  The Specker-Blatter theorem does not hold for quaternary relations , 2003, J. Comb. Theory A.

[14]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[15]  Avram Sidi,et al.  Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.

[16]  Christian Blatter,et al.  Recurrence relations for the number of labeled structures on a finite set , 1983, Logic and Machines.

[17]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[18]  H. Prömel,et al.  Excluding Induced Subgraphs III: A General Asymptotic , 1992 .

[19]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[20]  Johann A. Makowsky,et al.  The Specker-Blatter Theorem Revisited , 2003, COCOON.

[21]  Ernst Specker,et al.  Application of Logic and Combinatorics to Enumeration Problems , 1990 .

[22]  Béla Bollobás,et al.  The Speed of Hereditary Properties of Graphs , 2000, J. Comb. Theory B.

[23]  B. Bollobás,et al.  Projections of Bodies and Hereditary Properties of Hypergraphs , 1995 .

[24]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[25]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[26]  Béla Bollobás,et al.  Measures on monotone properties of graphs , 2002, Discret. Appl. Math..

[27]  Andrea Frosini,et al.  A Technology for Reverse-Engineering a Combinatorial Problem from a Rational Generating Function , 2001, Adv. Appl. Math..

[28]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[29]  Rudolf Lide,et al.  Finite fields , 1983 .

[30]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[31]  D. Welsh,et al.  On the growth rate of minor-closed classes of graphs , 2007, 0710.2995.

[32]  Edward R. Scheinerman,et al.  On the Size of Hereditary Classes of Graphs , 1994, J. Comb. Theory B.

[33]  Jörg Flum,et al.  Mathematical logic , 1985, Undergraduate texts in mathematics.

[34]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[35]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.