Classical and quantum information processing with EIT

We review our work on electromagnetically induced transparency (EIT) as a potentially key enabling science for few-qubit Quantum Information Technology (QIT). EIT systems capable of providing two-qubit phase shifts as large as pi are possible in a condensed matter system such as NV-diamond, but the potentially large residual absorption necessarily arising under this condition significantly reduces the fidelity of a nonlinear optical gate based on EIT. Instead, we emphasize that a universal set of quantum gates can be constructed using EIT systems that provide cumulative phase shifts (and residual absorptions) that are much smaller than unity. We describe a single-photon quantum nondemolition detector and a two-photon parity gate as basic elements of a nonlinear optical quantum information processing system.

[1]  S. Rebic,et al.  Photon statistics of a single-atom intracavity system involving electromagnetically induced transparency , 2002 .

[2]  Sarah E. Harris,et al.  Nonlinear Optical Processes Using Electromagnetically Induced Transparency , 1990, Digest on Nonlinear Optics: Materials, Phenomena and Devices.

[3]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[4]  M S Shahriar,et al.  Raman-excited spin coherences in nitrogen-vacancy color centers in diamond. , 2001, Optics letters.

[5]  R. G. Beausoleil,et al.  Applications of electromagnetically induced transparency to quantum information processing , 2004, quant-ph/0403028.

[6]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[7]  M. Fleischhauer,et al.  Quantum memory for photons: Dark-state polaritons , 2002 .

[8]  C. K. Law,et al.  Localized single-photon wave functions in free space. , 2002, Physical review letters.

[9]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[10]  T. Gacoin,et al.  Room temperature stable single-photon source , 2002 .

[11]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[12]  Tad Hogg,et al.  A Quantum Treatment of Public Goods Economics , 2002, Quantum Inf. Process..

[13]  Y. Zhu,et al.  Nonlinear absorption by quantum interference in cold atoms. , 2001, Optics letters.

[14]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[15]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[16]  Marin Soljacic,et al.  Ultralow-power all-optical switching , 2005 .

[17]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[18]  K. Burnett Atom-Photon Interactions Basic Processes and Applications , 1992 .

[19]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[20]  J. Cirac,et al.  Dipole blockade and quantum information processing in mesoscopic atomic ensembles. , 2000, Physical review letters.

[21]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[22]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[23]  Vitali,et al.  Complete quantum teleportation with a kerr nonlinearity , 2000, Physical review letters.

[24]  R. G. Beausoleil,et al.  Applications of coherent population transfer to quantum information processing , 2003, quant-ph/0302109.

[25]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[26]  Lukin,et al.  Nonlinear optics and quantum entanglement of ultraslow single photons , 2000, Physical review letters.

[27]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[28]  “Stopping” of light and quantum memories for photons , 2001, quant-ph/0110056.

[29]  Single atom in free space as a quantum aperture , 1999, quant-ph/9908082.

[30]  S. E. Harris,et al.  Low-light-level nonlinear optics with slow light , 2003 .

[31]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[32]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[33]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[34]  M. Xiao,et al.  Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. , 2001, Physical review letters.

[35]  P. Domokos,et al.  Quantum description of light-pulse scattering on a single atom in waveguides , 2002, quant-ph/0202005.

[36]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[37]  John C. Howell,et al.  Nondestructive single-photon trigger , 2000 .

[38]  Sarah E. Harris,et al.  Photon Switching by Quantum Interference , 1998 .

[39]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[40]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[41]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.