Empirical Interpolation with Application to Reduced Basis Approximations

Properties of the empirical interpolation (EI) method is investigated by solving selected model problems. Also, a more challenging example with deformed geometry is solved within the online/offline ...

[1]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[2]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[3]  Gianluigi Rozza Shape design by optimal flow control and reduced basis techniques , 2005 .

[4]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[5]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[6]  M. Matausek Direct shooting method for the solution of boundary-value problems , 1973 .

[7]  Richard Weiss,et al.  The convergence of shooting methods , 1973 .

[8]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[9]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[10]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[11]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[12]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[13]  Moduli of smoothness and best approximation of functions with singularities , 2000 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[16]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[17]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[18]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[19]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[20]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[21]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[22]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[25]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[26]  J. Hesthaven,et al.  Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell"s problem , 2009 .

[27]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[28]  Paul B. Garrett Introduction to Hilbert spaces , 2008 .

[29]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[30]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[31]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[32]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[33]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[34]  N. Young An Introduction to Hilbert Space , 1988 .