Analyzing the Impact of Feature Drifts in Streaming Learning
暂无分享,去创建一个
[1] William Nick Street,et al. A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.
[2] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[3] Geoff Hulten,et al. Mining high-speed data streams , 2000, KDD '00.
[4] Ricard Gavaldà,et al. Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.
[5] João Gama,et al. A survey on concept drift adaptation , 2014, ACM Comput. Surv..
[6] Mohamed Medhat Gaber,et al. Knowledge discovery from data streams , 2009, IDA 2009.
[7] Li Wan,et al. Heterogeneous Ensemble for Feature Drifts in Data Streams , 2012, PAKDD.
[8] Bhavani M. Thuraisingham,et al. Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints , 2011, IEEE Transactions on Knowledge and Data Engineering.
[9] João Gama,et al. Issues in evaluation of stream learning algorithms , 2009, KDD.
[10] Geoff Holmes,et al. New ensemble methods for evolving data streams , 2009, KDD.
[11] Jesús S. Aguilar-Ruiz,et al. Knowledge discovery from data streams , 2009, Intell. Data Anal..
[12] William W. Cohen,et al. Single-pass online learning: performance, voting schemes and online feature selection , 2006, KDD '06.
[13] Jean Paul Barddal,et al. SFNClassifier: a scale-free social network method to handle concept drift , 2014, SAC.
[14] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Data stream clustering: A survey , 2013, CSUR.
[15] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[16] Zhou Zimu,et al. RSSIからCSIへ:チャネルレスポンスによるインドア・ローカリゼーション , 2013 .
[17] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.