Current tools for the identification of miRNA genes and their targets

The discovery of microRNAs (miRNAs), almost 10 years ago, changed dramatically our perspective on eukaryotic gene expression regulation. However, the broad and important functions of these regulators are only now becoming apparent. The expansion of our catalogue of miRNA genes and the identification of the genes they regulate owe much to the development of sophisticated computational tools that have helped either to focus or interpret experimental assays. In this article, we review the methods for miRNA gene finding and target identification that have been proposed in the last few years. We identify some problems that current approaches have not yet been able to overcome and we offer some perspectives on the next generation of computational methods.

[1]  T. Tuschl,et al.  Structure of the guide-strand-containing argonaute silencing complex , 2008, Nature.

[2]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[3]  Chao Cheng,et al.  Inferring MicroRNA Activities by Combining Gene Expression with MicroRNA Target Prediction , 2008, PloS one.

[4]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[5]  Yun Zheng,et al.  Identification of novel and candidate miRNAs in rice by high throughput sequencing , 2008, BMC Plant Biology.

[6]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[7]  Xiaowei Wang,et al.  Sequence analysis Prediction of both conserved and nonconserved microRNA targets in animals , 2007 .

[8]  Brendan J. Frey,et al.  Comparing Sequence and Expression for Predicting microRNA Targets Using GenMIR3 , 2007, Pacific Symposium on Biocomputing.

[9]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[10]  Carsten Wiuf,et al.  Ab Initio Identification of Human Micrornas Based on Structure Motifs Ab Initio Identification of Human Micrornas Based on Struc- Ture Motifs , 2007 .

[11]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[12]  Trina M. Norden-Krichmar,et al.  Computational prediction and experimental validation of Ciona intestinalis microRNA genes , 2007, BMC Genomics.

[13]  Thomas Sandmann,et al.  Identification of Novel Drosophila melanogaster MicroRNAs , 2007, PloS one.

[14]  Sonja J. Prohaska,et al.  Computational RNomics of Drosophilids , 2007, BMC Genomics.

[15]  Marie Öhman,et al.  A-to-I editing challenger or ally to the microRNA process. , 2007 .

[16]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[17]  B. Lenhard,et al.  Mammalian MicroRNA Prediction through a Support Vector Machine Model of Sequence and Structure , 2007, PloS one.

[18]  Bin Fan,et al.  MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans , 2007, BMC Bioinformatics.

[19]  D. Chitwood,et al.  Target mimics modulate miRNAs , 2007, Nature Genetics.

[20]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[21]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[22]  D. Baulcombe,et al.  miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii , 2007, Nature.

[23]  Peng Jiang,et al.  MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features , 2007, Nucleic Acids Res..

[24]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[25]  Anton J. Enright,et al.  Prediction of microRNA targets. , 2007, Drug discovery today.

[26]  William Ritchie,et al.  RNA stem-loops: to be or not to be cleaved by RNAse III. , 2007, RNA.

[27]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[28]  V. Kim,et al.  Processing of intronic microRNAs , 2007, The EMBO journal.

[29]  Santosh K. Mishra,et al.  De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures , 2007, Bioinform..

[30]  Ola R. Snøve,et al.  Reliable prediction of Drosha processing sites improves microRNA gene prediction. , 2007, Bioinformatics.

[31]  M. Ohman A-to-I editing challenger or ally to the microRNA process. , 2007, Biochimie.

[32]  Christine G Elsik,et al.  Computational and transcriptional evidence for microRNAs in the honey bee genome , 2007, Genome Biology.

[33]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[34]  Martti T. Tammi,et al.  MicroTar: predicting microRNA targets from RNA duplexes , 2006, BMC Bioinformatics.

[35]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[36]  Jan Gorodkin,et al.  MicroRNA sequence motifs reveal asymmetry between the stem arms , 2006, Comput. Biol. Chem..

[37]  Peter F. Stadler,et al.  Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.

[38]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[39]  Louise C. Showe,et al.  Bioinformatics Original Paper Combining Multi-species Genomic Data for Microrna Identification Using a Naı¨ve Bayes Classifier , 2022 .

[40]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[41]  E. Borenstein,et al.  Direct evolution of genetic robustness in microRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Baohong Zhang,et al.  Conservation and divergence of plant microRNA genes. , 2006, The Plant journal : for cell and molecular biology.

[43]  Daniel H. Huson,et al.  Identification of plant microRNA homologs , 2006, Bioinform..

[44]  K. Chaudhuri,et al.  An approach for the identification of microRNA with an application to Anopheles gambiae. , 2006, Acta biochimica Polonica.

[45]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[46]  Anton J. Enright,et al.  RNA editing of human microRNAs , 2006, Genome Biology.

[47]  S. Cox,et al.  Evidence that miRNAs are different from other RNAs , 2006, Cellular and Molecular Life Sciences CMLS.

[48]  Fei Li,et al.  Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine , 2005, BMC Bioinformatics.

[49]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[50]  R. Pillai MicroRNA function: multiple mechanisms for a tiny RNA? , 2005, RNA.

[51]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[52]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[53]  William H Press,et al.  Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Fei Li,et al.  MicroRNA identification based on sequence and structure alignment , 2005, Bioinform..

[55]  Anders Krogh,et al.  Computational evidence for hundreds of non-conserved plant microRNAs , 2005, BMC Genomics.

[56]  Donald C. Chang,et al.  Asymmetry of intronic pre-miRNA structures in functional RISC assembly. , 2005, Gene.

[57]  Richard W. Carthew,et al.  Silence from within: Endogenous siRNAs and miRNAs , 2005, Cell.

[58]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[59]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[60]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[61]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[62]  Peter M. Waterhouse,et al.  Plant and animal microRNAs: similarities and differences , 2005, Functional & Integrative Genomics.

[63]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[64]  Daniel Gautheret,et al.  Profile-based detection of microRNA precursors in animal genomes , 2005, Bioinform..

[65]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[66]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Gang Wu,et al.  Nuclear processing and export of microRNAs in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[69]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[70]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[71]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[72]  Yang Li,et al.  Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. , 2005, Acta biochimica et biophysica Sinica.

[73]  Guiliang Tang,et al.  siRNA and miRNA: an insight into RISCs. , 2005, Trends in biochemical sciences.

[74]  B. Patterson,et al.  Letter to the editor. , 2018, Journal of professional nursing : official journal of the American Association of Colleges of Nursing.

[75]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[76]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[77]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[78]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[79]  S. Ying,et al.  Intronic microRNAs. , 2005, Biochemical and biophysical research communications.

[80]  P. Macdonald,et al.  Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method , 2005, BMC Genomics.

[81]  B. Cullen Transcription and processing of human microRNA precursors. , 2004, Molecular cell.

[82]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[83]  F. Slack,et al.  Architecture of a validated microRNA::target interaction. , 2004, Chemistry & biology.

[84]  Yves Van de Peer,et al.  Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences , 2004, Bioinform..

[85]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[86]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[87]  J. Krol,et al.  Structural Features of MicroRNA (miRNA) Precursors and Their Relevance to miRNA Biogenesis and Small Interfering RNA/Short Hairpin RNA Design* , 2004, Journal of Biological Chemistry.

[88]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[89]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[90]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[91]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[92]  P. Rouzé,et al.  Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Henry Mirsky,et al.  RNA editing of a miRNA precursor. , 2004, RNA.

[94]  R. Sunkar,et al.  Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis , 2004, The Plant Cell Online.

[95]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[96]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[97]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[98]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[99]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[100]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[101]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[102]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[103]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[104]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[105]  R. Plasterk,et al.  Substrate requirements for let-7 function in the developing zebrafish embryo. , 2004, Nucleic acids research.

[106]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[107]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[108]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[109]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[110]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[111]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[112]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[113]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[114]  Julius Brennecke,et al.  Towards a complete description of the microRNA complement of animal genomes , 2003, Genome Biology.

[115]  B. Cullen,et al.  MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[117]  David P. Bartel,et al.  MicroRNAs: At the Root of Plant Development?1 , 2003, Plant Physiology.

[118]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[119]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[120]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[121]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[122]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[123]  Anton J. Enright,et al.  MicroRNA Targets in Drosophila , 2003, Genome Biology.

[124]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[125]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[126]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[127]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[128]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[129]  Ben Lehner,et al.  Antisense transcripts in the human genome. , 2002, Trends in genetics : TIG.

[130]  V. Ambros microRNAs Tiny Regulators with Great Potential , 2001, Cell.

[131]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[132]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[133]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[134]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[135]  Béatrice Conne,et al.  The 3′ untranslated region of messenger RNA: A molecular ‘hotspot’ for pathology? , 2000, Nature Medicine.

[136]  D. O. Wijnands,et al.  Identification of plants , 1997 .

[137]  K. D. Kasschau,et al.  A MicroRNA as a Translational Repressor of APETALA 2 in Arabidopsis Flower Development , 2022 .