Orthogonal simulated annealing for multiobjective optimization

Abstract The paper proposes a new simulated annealing (SA) based multiobjective optimization algorithm, called orthogonal simulated annealing (OSA) algorithm in this work. The OSA algorithm incorporates an orthogonal experiment design (OED) with a simulated annealing based multiobjective algorithm aiming to provide an efficient multiobjective algorithm. OED involves several experiments based on an orthogonal table and a fractional factorial analysis to extract intelligently the best combination of decision vectors making the classical SA to explore search space effectively, to enhance convergence, and to improve quality of solutions in the Pareto set. These benefits have been tested by comparing the performance of OSA with one state-of-the-art multiobjective evolutionary algorithm (NSGA2) and one classical simulated annealing based multiobjective algorithm (CMOSA) considering multiobjective problems of varying degrees of complexity. The obtained Pareto sets by these three algorithms have been tested using standard methods like measure C, hypervolume comparison, etc. Simulation results show that the performance of and CPU time required by these algorithms are problem dependent, and with some problems, the OSA algorithm outperforms the other two algorithms. In particular, the comparison between OSA and CMOSA suggests that around 70% times OSA outperforms CMOSA and obtains a well diversified set of solutions. In addition, with some problems, OSA captures the Pareto fronts where CMOSA fails. Therefore, the development of OSA is noteworthy, and it provides an additional tool to solve multiobjective optimization problems.

[1]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Krishna B. Misra,et al.  An efficient approach for multiple criteria redundancy optimization problems , 1991 .

[4]  Tang Renyuan,et al.  Optimization of electromagnetic devices by using intelligent simulated annealing algorithm , 1998 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[9]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[10]  Hans-Jürgen Zimmermann,et al.  Fuzzy global optimization of complex system reliability , 2000, IEEE Trans. Fuzzy Syst..

[11]  Martin D. F. Wong,et al.  Fast evaluation of sequence pair in block placement by longestcommon subsequence computation , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[13]  Masatoshi Sakawa Optimal Reliability-Design of a Series-Parallel System by a Large-Scale Multiobjective Optimization Method , 1981, IEEE Transactions on Reliability.

[14]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[15]  H. Tanaka,et al.  A comparative study of GA and orthogonal experimental design , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[16]  Keki Bhote,et al.  World Class Quality: Using Design of Experiments to Make It Happen , 1991 .

[17]  A. Dhingra Optimal apportionment of reliability and redundancy in series systems under multiple objectives , 1992 .

[18]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[19]  B. Suman Simulated annealing-based multiobjective algorithms and their application for system reliability , 2003 .

[20]  D. K. Dey,et al.  Bayes computation for life testing and reliability estimation , 1992 .

[21]  Geoffrey T. Parks,et al.  Simulated annealing: An alternative approach to true multiobjective optimization , 1999 .

[22]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[23]  J. Simkin,et al.  Optimizing electromagnetic devices combining direct search methods with simulated annealing , 1992 .

[24]  Renato A. Krohling,et al.  Design of optimal disturbance rejection PID controllers using genetic algorithms , 2001, IEEE Trans. Evol. Comput..

[25]  Krishna B. Misra,et al.  Multicriteria optimization for combined reliability and redundancy allocation in systems employing mixed redundancies , 1991 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  P. Serafini Mathematics of multi objective optimization , 1985 .

[28]  D. Butala,et al.  Multiobjective dynamic optimization of a semibatch free-radical copolymerization process with interactive cad tools , 1988 .

[29]  A. Khachaturyan Statistical mechanics approach in minimizing a multivariable function , 1986 .

[30]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[31]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[32]  Balram Suman,et al.  Study of self-stopping PDMOSA and performance measure in multiobjective optimization , 2005, Comput. Chem. Eng..

[33]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[34]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[35]  Y. Lim,et al.  Efficient Implementation of the Normal Boundary Intersection (NBI) Method on Multiobjective Optimization Problems , 2001 .

[36]  G. Gong,et al.  An adaptive simulated annealing algorithm , 2001 .

[37]  Jenn-Long Liu,et al.  Novel orthogonal simulated annealing with fractional factorial analysis to solve global optimization problems , 2005 .

[38]  Dorian Shainin,et al.  Better than Taguchi orthogonal tables , 1988 .

[39]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .

[40]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[41]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[42]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[43]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[44]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[45]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[46]  Kenneth J. Supowit,et al.  Simulated Annealing Without Rejected Moves , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[47]  H. Szu Fast simulated annealing , 1987 .

[48]  Alberto Herreros,et al.  MRCD: a genetic algorithm for multiobjective robust control design ☆ , 2002 .

[49]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[50]  Hiroshi Kamada,et al.  Surrogate Constraints Algorithm for Reliability Optimization Problems with Multiple Constraints , 1981, IEEE Transactions on Reliability.

[51]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[52]  Balram Suman,et al.  Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem , 2004, Comput. Chem. Eng..

[53]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[54]  Jacques Teghem,et al.  Efficiency of interactive multi-objective simulated annealing through a case study , 1998, J. Oper. Res. Soc..

[55]  Geoffrey T. Parks,et al.  An Intelligent Stochastic Optimization Routine for Nuclear Fuel Cycle Design , 1990 .

[56]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[57]  Toshiyuki Inagaki,et al.  Interactive Optimization of System Reliability Under Multiple Objectives , 1978, IEEE Transactions on Reliability.

[58]  Philippe Fortemps,et al.  Performance of the MOSA Method for the Bicriteria Assignment Problem , 2000, J. Heuristics.

[59]  Masatoshi Sakawa Interactive Multiobjective Optimization by the Sequential Proxy Optimization Technique (SPOT) , 1982, IEEE Transactions on Reliability.

[60]  Balram Suman,et al.  Multiobjective simulated annealing - a metaheuristic technique for multiobjective optimization of a constrained problem , 2002 .

[61]  C. Tsallis,et al.  Generalized simulated annealing , 1995, cond-mat/9501047.

[62]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[63]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[64]  Tang Renyuan,et al.  Combined strategy of improved simulated annealing and genetic algorithm for inverse problem , 1996 .