Conic approximation of planar curves

Abstract An upper bound of the Hausdorff distance between planar curve and conic section can be expressed by the maximum norm of error function from the conic section to the planar curve (Comput. Aided Geomet. Design, 14 (1997) 135–151). With respect to the maximum norm we characterize the necessary and sufficient condition for the conic section to be optimal approximation of the given planar curve. As an example, we approximate the cubic rational Bezier curves by conic sections using our characterization, and present the upper bound of the Hausdorff distance numerically.

[1]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[2]  Michael S. Floater An O(h2n) Hermite approximation for conic sections , 1997, Comput. Aided Geom. Des..

[3]  Vaughan R. Pratt,et al.  Techniques for conic splines , 1985, SIGGRAPH.

[4]  Joe Schallan VLSI and New Markets Drive CG Developments , 1983, IEEE Computer Graphics and Applications.

[5]  M. G. Cox,et al.  The Approximation of a Composite Bézier Cubic Curve by a Composite Bézier Quadratic Curve , 1991 .

[6]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[7]  Les A. Piegl,et al.  Infinite Control Points-A Method for Representing Surfaces of Revolution Using Boundary Data , 1987, IEEE Computer Graphics and Applications.

[8]  Peter R. Wilson,et al.  Conic Representations for Shape Description , 1987, IEEE Computer Graphics and Applications.

[9]  Les A. Piegl The sphere as a rational Bézier surface , 1986, Comput. Aided Geom. Des..

[10]  Theodosios Pavlidis,et al.  Curve Fitting with Conic Splines , 1983, TOGS.

[11]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[12]  Les A. Piegl,et al.  Interactive Data Interpolation by Rational Bezier Curves , 1987, IEEE Computer Graphics and Applications.

[13]  Hyeong-Chan Kim,et al.  Curvatures of the quadratic rational Bézier curves , 1998 .

[14]  Eberhard Eisele,et al.  Best approximations of symmetric surfaces by biquadratic Bézier surfaces , 1994, Comput. Aided Geom. Des..

[15]  Gerald E. Farin Curvature continuity and offsets for piecewise conics , 1989, TOGS.

[16]  Wendelin L. F. Degen,et al.  Best Approximations of Parametric Curves by Splines , 1992, Geometric Modelling.

[17]  Robert Schaback Planar curve interpolation by piecewise conics of arbitrary type , 1993 .

[18]  L. Piegl,et al.  Curve and surface constructions using rational B-splines , 1987 .

[19]  Wendelin L. F. Degen High accurate rational approximation of parametric curves , 1993, Comput. Aided Geom. Des..

[20]  Wayne Tiller,et al.  Rational B-Splines for Curve and Surface Representation , 1983, IEEE Computer Graphics and Applications.